Created
June 15, 2018 05:08
-
-
Save pyliaorachel/60428fa02548cdfa70293063466e6020 to your computer and use it in GitHub Desktop.
OpenAI Gym CartPole - Deep Q-Learning (dqn learn)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def learn(self): | |
# 隨機取樣 batch_size 個 experience | |
sample_index = np.random.choice(self.memory_capacity, self.batch_size) | |
b_memory = self.memory[sample_index, :] | |
b_state = torch.FloatTensor(b_memory[:, :self.n_states]) | |
b_action = torch.LongTensor(b_memory[:, self.n_states:self.n_states+1].astype(int)) | |
b_reward = torch.FloatTensor(b_memory[:, self.n_states+1:self.n_states+2]) | |
b_next_state = torch.FloatTensor(b_memory[:, -self.n_states:]) | |
# 計算現有 eval net 和 target net 得出 Q value 的落差 | |
q_eval = self.eval_net(b_state).gather(1, b_action) # 重新計算這些 experience 當下 eval net 所得出的 Q value | |
q_next = self.target_net(b_next_state).detach() # detach 才不會訓練到 target net | |
q_target = b_reward + self.gamma * q_next.max(1)[0].view(self.batch_size, 1) # 計算這些 experience 當下 target net 所得出的 Q value | |
loss = self.loss_func(q_eval, q_target) | |
# Backpropagation | |
self.optimizer.zero_grad() | |
loss.backward() | |
self.optimizer.step() | |
# 每隔一段時間 (target_replace_iter), 更新 target net,即複製 eval net 到 target net | |
self.learn_step_counter += 1 | |
if self.learn_step_counter % self.target_replace_iter == 0: | |
self.target_net.load_state_dict(self.eval_net.state_dict()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment