Last active
May 8, 2017 04:11
-
-
Save rafaftahsin/371145bac42f6e1a8db1113719d7687f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# https://www.youtube.com/watch?v=PwAGxqrXSCs&index=47&list=PLQVvvaa0QuDfKTOs3Keq_kaG2P55YRn5v | |
import tensorflow as tf | |
from tensorflow.examples.tutorials.mnist import input_data | |
mnist = input_data.read_data_sets("tmp/data/", one_hot=True) | |
n_nodes_hl1 = 500 | |
n_nodes_hl2 = 500 | |
n_nodes_hl3 = 500 | |
n_classes = 10 | |
batch_size = 100 | |
# input feature size = 28x28 pixels = 784 | |
x = tf.placeholder('float', [None, 784]) | |
y = tf.placeholder('float') | |
def neural_network_model(data): | |
# input_data * weights + biases | |
hidden_l1 = {'weights': tf.Variable(tf.random_normal([784, n_nodes_hl1])), | |
'biases': tf.Variable(tf.random_normal([n_nodes_hl1]))} | |
hidden_l2 = {'weights': tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])), | |
'biases': tf.Variable(tf.random_normal([n_nodes_hl2]))} | |
hidden_l3 = {'weights': tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])), | |
'biases': tf.Variable(tf.random_normal([n_nodes_hl3]))} | |
output_l = {'weights': tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])), | |
'biases': tf.Variable(tf.random_normal([n_classes]))} | |
l1 = tf.add(tf.matmul(data, hidden_l1['weights']), hidden_l1['biases']) | |
l1 = tf.nn.relu(l1) | |
l2 = tf.add(tf.matmul(l1, hidden_l2['weights']), hidden_l2['biases']) | |
l2 = tf.nn.relu(l2) | |
l3 = tf.add(tf.matmul(l2, hidden_l3['weights']), hidden_l3['biases']) | |
l3 = tf.nn.relu(l3) | |
output = tf.add(tf.matmul(l3, output_l['weights']), output_l['biases']) | |
return output | |
def train_neural_network(x): | |
prediction = neural_network_model(x) | |
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y)) # v1.0 changes | |
# optimizer value = 0.001, Adam similar to SGD | |
optimizer = tf.train.AdamOptimizer().minimize(cost) | |
epochs_no = 10 | |
with tf.Session() as sess: | |
sess.run(tf.global_variables_initializer()) # v1.0 changes | |
# training | |
for epoch in range(epochs_no): | |
epoch_loss = 0 | |
for _ in range(int(mnist.train.num_examples/batch_size)): | |
epoch_x, epoch_y = mnist.train.next_batch(batch_size) | |
_, c = sess.run([optimizer, cost], feed_dict = {x: epoch_x, y: epoch_y}) | |
# code that optimizes the weights & biases | |
epoch_loss += c | |
print('Epoch', epoch, 'completed out of', epochs_no, 'loss:', epoch_loss) | |
# testing | |
correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1)) | |
accuracy = tf.reduce_mean(tf.cast(correct, 'float')) | |
print('Accuracy:', accuracy.eval({x: mnist.test.images, y: mnist.test.labels})) | |
train_neural_network(x) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment