Created
January 18, 2020 19:50
-
-
Save richardliaw/c526f29747d849ca98bbf2224839dfd2 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Licensed to the Apache Software Foundation (ASF) under one | |
# or more contributor license agreements. See the NOTICE file | |
# distributed with this work for additional information | |
# regarding copyright ownership. The ASF licenses this file | |
# to you under the Apache License, Version 2.0 (the | |
# "License"); you may not use this file except in compliance | |
# with the License. You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an | |
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
# KIND, either express or implied. See the License for the | |
# specific language governing permissions and limitations | |
# under the License. | |
# pylint: skip-file | |
from __future__ import print_function | |
import os | |
import argparse | |
import logging | |
logging.basicConfig(level=logging.DEBUG) | |
import numpy as np | |
import mxnet as mx | |
from mxnet import gluon, autograd | |
from mxnet.gluon import nn | |
# Parse CLI arguments | |
parser = argparse.ArgumentParser(description='MXNet Gluon MNIST Example') | |
parser.add_argument('--batch-size', type=int, default=100, | |
help='batch size for training and testing (default: 100)') | |
parser.add_argument('--epochs', type=int, default=2, | |
help='number of epochs to train (default: 10)') | |
parser.add_argument('--lr', type=float, default=0.1, | |
help='learning rate (default: 0.1)') | |
parser.add_argument('--momentum', type=float, default=0.9, | |
help='SGD momentum (default: 0.9)') | |
parser.add_argument('--cuda', action='store_true', default=False, | |
help='Train on GPU with CUDA') | |
parser.add_argument('--log-interval', type=int, default=100, metavar='N', | |
help='how many batches to wait before logging training status') | |
opt = parser.parse_args() | |
# define network | |
net = nn.Sequential() | |
with net.name_scope(): | |
net.add(nn.Dense(128, activation='relu')) | |
net.add(nn.Dense(64, activation='relu')) | |
net.add(nn.Dense(10)) | |
# data | |
def transformer(data, label): | |
data = data.reshape((-1,)).astype(np.float32)/255 | |
return data, label | |
train_data = gluon.data.DataLoader( | |
gluon.data.vision.MNIST('./data', train=True, transform=transformer), | |
batch_size=opt.batch_size, shuffle=True, last_batch='discard') | |
val_data = gluon.data.DataLoader( | |
gluon.data.vision.MNIST('./data', train=False, transform=transformer), | |
batch_size=opt.batch_size, shuffle=False) | |
# train | |
def test(ctx): | |
metric = mx.metric.Accuracy() | |
for data, label in val_data: | |
data = data.as_in_context(ctx) | |
label = label.as_in_context(ctx) | |
output = net(data) | |
metric.update([label], [output]) | |
return metric.get() | |
def train(config): | |
opt = config["opt"] | |
if opt.cuda: | |
ctx = mx.gpu(0) | |
else: | |
ctx = mx.cpu() | |
epochs = config["epochs"] | |
# Collect all parameters from net and its children, then initialize them. | |
net.initialize(mx.init.Xavier(magnitude=2.24), ctx=ctx) | |
# Trainer is for updating parameters with gradient. | |
trainer = gluon.Trainer(net.collect_params(), 'sgd', | |
{'learning_rate': opt.lr, 'momentum': opt.momentum}) | |
metric = mx.metric.Accuracy() | |
loss = gluon.loss.SoftmaxCrossEntropyLoss() | |
for epoch in range(epochs): | |
# reset data iterator and metric at begining of epoch. | |
metric.reset() | |
for i, (data, label) in enumerate(train_data): | |
# Copy data to ctx if necessary | |
data = data.as_in_context(ctx) | |
label = label.as_in_context(ctx) | |
# Start recording computation graph with record() section. | |
# Recorded graphs can then be differentiated with backward. | |
with autograd.record(): | |
output = net(data) | |
L = loss(output, label) | |
L.backward() | |
# take a gradient step with batch_size equal to data.shape[0] | |
trainer.step(data.shape[0]) | |
# update metric at last. | |
metric.update([label], [output]) | |
if i % opt.log_interval == 0 and i > 0: | |
name, acc = metric.get() | |
#print('[Epoch %d Batch %d] Training: %s=%f'%(epoch, i, name, acc)) | |
tune.track.log(epoch=epoch, name=name, mean_accuracy=acc) | |
name, acc = metric.get() | |
print('[Epoch %d] Training: %s=%f'%(epoch, name, acc)) | |
name, val_acc = test(ctx) | |
print('[Epoch %d] Validation: %s=%f'%(epoch, name, val_acc)) | |
net.save_parameters('mnist.params') | |
import ray | |
ray.init() | |
from ray import tune | |
from ray.tune.schedulers import AsyncHyperBandScheduler | |
sched = AsyncHyperBandScheduler( | |
time_attr="training_iteration", | |
reward_attr="mean_accuracy", | |
max_t=400, | |
grace_period=2) | |
tune.run(train, resources_per_trial={"gpu": 1}, config={"opt": opt, "epochs": 2}, num_samples=20, scheduler=sched) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment