Created
July 11, 2020 04:44
-
-
Save rldotai/ecf0ed53ec6396cdfe9f5a7d3888d234 to your computer and use it in GitHub Desktop.
A Matplotlib Norm with a Fixed Midpoint
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from matplotlib.colors import Normalize | |
class FixedMidpointNorm(Normalize): | |
def __init__(self, vcenter): | |
""" | |
Normalize data with a set center. | |
For plotting diverging colormaps around a particular value, at the | |
possible cost of some dynamic range. | |
Parameters | |
---------- | |
vcenter : float | |
The data value that defines `0.5` in the normalization. | |
Examples | |
-------- | |
This maps values such that zero is mapped to 0.5, with the other values | |
scaled accordingly:: | |
>>> norm = FixedMidpointNorm(0.0) | |
>>> data = [-100. -75. -50. -25. 0. 25.] | |
>>> norm(data) | |
array([0. , 0.125, 0.25 , 0.375, 0.5 , 0.625]) | |
""" | |
self.vcenter = vcenter | |
self.vmin = None | |
self.vmax = None | |
def autoscale_None(self, A): | |
""" | |
Get vmin and vmax, and then clip at vcenter | |
""" | |
super().autoscale_None(A) | |
# Distance between center and the max/min of the data | |
lo = max(self.vcenter - self.vmin, 0) | |
hi = max(self.vmax - self.vcenter, 0) | |
if hi > lo: | |
self._lower = self.vcenter - hi | |
self._upper = self.vcenter + hi | |
else: | |
self._lower = self.vcenter - lo | |
self._upper = self.vcenter + lo | |
def __call__(self, value, clip=None): | |
""" | |
Map value to the interval [0, 1]. The clip argument is unused. | |
""" | |
result, is_scalar = self.process_value(value) | |
self.autoscale_None(result) # sets self.vmin, self.vmax if None | |
if not self.vmin <= self.vcenter <= self.vmax: | |
raise ValueError("vmin, vcenter, vmax must increase monotonically") | |
result = np.ma.masked_array( | |
np.interp(result, [self._lower, self.vcenter, self._upper], [0, 0.5, 1.0]), | |
mask=np.ma.getmask(result), | |
) | |
if is_scalar: | |
result = np.atleast_1d(result)[0] | |
return result |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment