Atue como um auditor técnico sênior de código, especializado em qualidade, padronização e legibilidade, sem alterar comportamento funcional.
Este prompt será executado automaticamente ao final de cada implementação do projeto.
| English | Portuguese (BR) |
|---|---|
| Provide | Provê |
| Enhancement | Aprimoramento |
| Enforce | Força |
| # Alias: | |
| alias cpython="cd Workspace/cpython/" | |
| alias kali="sudo docker container start kali-container && sudo docker exec -it kali-container /bin/bash" | |
| alias stopkali="sudo docker container stop kali-container" | |
| def ApplyesKFold(x_axis, y_axis): | |
| # Linear Models. | |
| from sklearn.linear_model import LinearRegression | |
| from sklearn.linear_model import ElasticNet | |
| from sklearn.linear_model import Ridge | |
| from sklearn.linear_model import Lasso | |
| # Cross-Validation models. | |
| from sklearn.model_selection import cross_val_score | |
| from sklearn.model_selection import KFold |
| import matplotlib.pyplot as plt | |
| import pandas as pd | |
| from sklearn.model_selection import cross_val_score # Cross Validation Function. | |
| from sklearn.model_selection import KFold # KFold Class. | |
| from sklearn.linear_model import LinearRegression # Linear Regression class. | |
| df = pd.read_csv("../datasets/Admission_Predict.csv") | |
| df.drop('Serial No.', axis = 1, inplace = True) |
| import pandas as pd | |
| pd.set_option('display.max_columns', 42) | |
| data = pd.read_csv('../datasets/2015-building-energy-benchmarking.csv') | |
| # Exibe a média de cada coluna. | |
| print((data.isnull().sum() / len(data['OSEBuildingID'])) * 100, '\n') | |
| data['ENERGYSTARScore'] = data['ENERGYSTARScore'].fillna(data['ENERGYSTARScore'].median()) |
| import pandas as pd | |
| pd.set_option('display.max_columns', 18) | |
| data = pd.read_csv('../datasets/athlete_events.csv') | |
| data['Height'] = data['Height'].fillna(data['Height'].mean()) | |
| data['Weight'] = data['Weight'].fillna(data['Weight'].mean()) | |
| print(data[['Height', 'Weight']].head(20)) |