Created
February 19, 2024 21:22
-
-
Save romanmichaelpaolucci/ba1d610e3f979346a749f5e3b7ebccdf to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
N = 10 | |
P0 = np.array([[.5, .5, 0, 0], [.5, 0, .5, .0], | |
[.5, 0, 0, .5], [.5, 0, 0, .5]]) | |
P1 = np.array([[.5, .5, 0, 0], [.5, 0, .5, .0], | |
[.5, 0, 0, .5], [0, 0, 0, 1]]) | |
hits = [] | |
# Simulation 1 | |
for i in range(10000): | |
chain = [] | |
flag = True | |
for j in range(N): | |
X = np.random.choice([0, 1], p=[1/2, 1/2]) | |
chain.append(X) | |
if len(chain)>2: | |
if chain[-1] == 1 and chain[-2] == 1 and chain[-3] == 1: | |
hits.append(1) | |
flag = False | |
break | |
if flag: | |
hits.append(0) | |
hits1 = [] | |
# Simulation 2 | |
for i in range(10000): | |
chain = [] | |
flag = True | |
for j in range(N): | |
X = np.random.choice([0, 1], p=[1/2, 1/2]) | |
chain.append(X) | |
if chain[-1] == 1 and chain[-2] == 1 and chain[-3] == 1: | |
hits1.append(1) | |
else: | |
hits1.append(0) | |
hits2 = [] | |
# Simulation 3 | |
for i in range(10000): | |
chain = [] | |
chains = 0 | |
flag = True | |
for j in range(N): | |
X = np.random.choice([0, 1], p=[1/2, 1/2]) | |
chain.append(X) | |
if len(chain)>2: | |
if chain[-1] == 1 and chain[-2] == 1 and chain[-3] == 1: | |
chains += 1 | |
if chain[-1] == 1 and chain[-2] == 1 and chain[-3] == 1 and chains == 1: | |
hits2.append(1) | |
else: | |
hits2.append(0) | |
print('Simulated Probability of Seeing 3H Chain in N Tosses', np.mean(hits)) | |
print('Simulated Probability of Seeing 3H Chain at the End of N Tosses', np.mean(hits1)) | |
print('Simulated Probability of Seeing 3H Chain for the first time at the End of N Tosses', np.mean(hits2)) | |
print('Q1', np.linalg.matrix_power(P1, N)[0][3]) | |
print('Q2', np.linalg.matrix_power(P0, N)[0][3]) | |
print('Q3', np.linalg.matrix_power(P1, N)[0][3] - np.linalg.matrix_power(P1, N-1)[0][3]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment