Last active
April 20, 2018 10:50
-
-
Save ronekko/40bf793001127417ac1837f4ad36b997 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" | |
Created on Mon Aug 10 14:40:04 2015 | |
@author: ryuhei | |
""" | |
import numpy as np | |
from basic_distributions import ( | |
ProbabilityDistribution, Multinomial, Gaussian, Poisson | |
) | |
class MixtureDistributionBase(ProbabilityDistribution): | |
def __init__(self, K, weights): | |
assert K == len(weights) | |
self.K = K | |
self.weights = weights | |
self.multinomial = Multinomial(weights) | |
self.mixture_components = None | |
def __call__(self, num_examples=10000, complete_data=False): | |
if self.mixture_components is None: | |
raise NotImplementedError | |
z = [] | |
x = [] | |
for i in range(num_examples): | |
z_i = self.multinomial(1)[0] | |
x_i = self.mixture_components[z_i](1)[0] | |
z.append(z_i) | |
x.append(x_i) | |
if complete_data: | |
return (np.array(z), np.array(x)) | |
else: | |
return np.array(x) | |
class MixtureOfGaussians(MixtureDistributionBase): | |
def __init__(self, K=3, weights=[0.1, 0.7, 0.2], | |
means=[-15, 0, 30], stds=[1, 10, 2]): | |
assert K == len(means) == len(stds) | |
super(MixtureOfGaussians, self).__init__(K, weights) | |
self.means = means | |
self.stds = stds | |
self.mixture_components = [ | |
Gaussian(means[k], stds[k]) for k in range(K)] | |
class MixtureOfPoissons(MixtureDistributionBase): | |
def __init__(self, K=3, weights=[0.3, 0.3, 0.4], | |
means=[2, 20, 50]): | |
assert K == len(means) | |
super(MixtureOfPoissons, self).__init__(K, weights) | |
self.means = means | |
self.mixture_components = [Poisson(means[k]) for k in range(K)] | |
if __name__ == '__main__': | |
distributions = [MixtureOfGaussians(), # 0 | |
MixtureOfPoissons(), # 1 | |
] | |
dist_type = 0 | |
complete_data = True | |
sampler = distributions[dist_type] | |
data = sampler(10000, complete_data) | |
if complete_data: | |
z, x = data | |
else: | |
x = data | |
sampler.visualize(x) | |
print("Distribution: ", sampler.get_name()) | |
print("Parameters: ", sampler.get_params()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment