Created
May 23, 2019 06:36
-
-
Save rossgoodwin/d21d97712435c07c78f9063cba5f1cf1 to your computer and use it in GitHub Desktop.
Based on Kyle McDonald's jupyter notebook code for sampling GPT-2 models
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# coding: utf-8 | |
# In[1]: | |
import json | |
import os | |
import numpy as np | |
import tensorflow as tf | |
import model, sample, encoder | |
from sys import argv, stdin | |
# In[2]: | |
# !ln -s ../models models # hack to make models "appear" in two places | |
# In[2]: | |
EXP_NAME, TEMP_STR = argv | |
SEED = stdin.read() | |
model_name = 'poet3' | |
seed = None | |
nsamples = 32 | |
batch_size = 32 | |
length = None | |
temperature = float(TEMP_STR) # 0 is deterministic | |
top_k = 0 # 0 means no restrictions | |
assert nsamples % batch_size == 0 | |
enc = encoder.get_encoder(model_name) | |
hparams = model.default_hparams() | |
with open(os.path.join('models', model_name, 'hparams.json')) as f: | |
hparams.override_from_dict(json.load(f)) | |
if length is None: | |
length = hparams.n_ctx // 2 | |
elif length > hparams.n_ctx: | |
raise ValueError("Can't get samples longer than window size: %s" % hparams.n_ctx) | |
# In[3]: | |
sess = tf.InteractiveSession() | |
# replace with this in script: | |
# with tf.Session(graph=tf.Graph()) as sess: | |
# In[4]: | |
context = tf.placeholder(tf.int32, [batch_size, None]) | |
np.random.seed(seed) | |
tf.set_random_seed(seed) | |
output = sample.sample_sequence( | |
hparams=hparams, length=length, | |
context=context, | |
batch_size=batch_size, | |
temperature=temperature, top_k=top_k | |
) | |
saver = tf.train.Saver() | |
ckpt = tf.train.latest_checkpoint(os.path.join('models', model_name)) | |
saver.restore(sess, ckpt) | |
# In[9]: | |
from utils.list_all_files import * | |
import unicodedata | |
import os, re, random | |
mapping = { | |
'\xa0': ' ', | |
'Æ': 'AE', | |
'æ': 'ae', | |
'è': 'e', | |
'é': 'e', | |
'ë': 'e', | |
'ö': 'o', | |
'–': '-', | |
'—': '-', | |
'‘': "'", | |
'’': "'", | |
'“': '"', | |
'”': '"' | |
} | |
def remove_special(text): | |
return ''.join([mapping[e] if e in mapping else e for e in text]) | |
def strip_word(word): | |
word = re.sub(r'^\W*|\W*$', '', word).lower() | |
return word | |
# basenames = [] | |
# all_poems = {} | |
# total_lines = 0 | |
# words = set() | |
# for fn in list_all_files('../../scraping/poetry/output'): | |
# with open(fn) as f: | |
# original = open(fn).read() | |
# text = remove_special(original).split('\n') | |
# poem = text[3:] | |
# basename = os.path.basename(fn) | |
# basename = os.path.splitext(basename)[0] | |
# basenames.append(basename) | |
# all_poems[basename] = { | |
# 'url': text[0], | |
# 'title': text[1], | |
# 'author': text[2], | |
# 'poem': poem | |
# } | |
# total_lines += len(poem) | |
# poem = '\n'.join(poem) | |
# words.update([strip_word(e) for e in poem.split()]) | |
# words.remove('') | |
# words = list(words) | |
# print(total_lines) | |
# In[10]: | |
def titlecase_word(word): | |
return word[0].upper() + word[1:] | |
# titlecase_word("carpenter's"), "carpenter's".title() | |
# In[11]: | |
def random_chunk(array, length): | |
start = random.randint(0, max(0, len(array) - length - 1)) | |
return array[start:start+length] | |
def random_item(array): | |
return array[random.randint(0, len(array) - 1)] | |
# random_chunk(all_poems[basenames[0]]['poem'], 2), titlecase_word(random_item(words)) | |
# In[12]: | |
# seeds = ''' | |
# blue | |
# epoch | |
# ethereal | |
# ineffable | |
# iridescent | |
# nefarious | |
# oblivion | |
# quiver | |
# solitude | |
# sonorous | |
# '''.split() | |
# len(seeds) | |
# In[13]: | |
#from utils.progress import progress | |
# In[26]: | |
def clean(text): | |
return text.split('<|endoftext|>')[0] | |
def generate(raw_text): | |
# inspiration = remove_special(inspiration).strip() | |
# seed = titlecase_word(seed).strip() | |
# raw_text = inspiration + '\n' + seed | |
context_tokens = enc.encode(raw_text) | |
n_context = len(context_tokens) | |
results = [] | |
for _ in range(nsamples // batch_size): | |
out = sess.run(output, feed_dict={ | |
context: [context_tokens for _ in range(batch_size)] | |
}) | |
for sample in out: | |
text = enc.decode(sample[n_context:]) | |
result = raw_text + text | |
results.append(result) | |
print( '\n'*3+'='*64+'\n'*3 ) | |
print( result ) | |
return results | |
if __name__ == '__main__': | |
res_list = generate(SEED) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment