-
-
Save rueian/839b6fb4a7cfa8a8b963e74d73ab33e6 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
class LSTMModel(nn.Module): | |
def __init__(self, input_dim, hidden_dim, output_dim): | |
super(LSTMModel, self).__init__() | |
self.hidden_dim = hidden_dim | |
self.lstm = nn.LSTM(input_dim, hidden_dim) | |
self.fc = nn.Linear(hidden_dim, output_dim) | |
def forward(self, x): | |
h0 = torch.zeros(1, x.size(1), self.hidden_dim) | |
c0 = torch.zeros(1, x.size(1), self.hidden_dim) | |
out, (hn, cn) = self.lstm(x, (h0, c0)) | |
out = self.fc(out) | |
return out | |
def target_transform(m: torch.Tensor): | |
a = torch.sum(m[:, :, 0:3], dim=-1, keepdim=True) | |
b = torch.sum(m[:, :, 1:4], dim=-1, keepdim=True) | |
c = torch.sum(m[:, :, 2:5], dim=-1, keepdim=True) | |
t = torch.cat([a, b, c], dim=-1) | |
for i in range(1, t.shape[0]): | |
t[i] += t[i-1] | |
return t | |
if __name__ == "__main__": | |
model = LSTMModel(input_dim=5, hidden_dim=10, output_dim=3) | |
optimizer = optim.AdamW(model.parameters(), lr=0.001) | |
criterion = nn.MSELoss() | |
# train the model | |
for epoch in range(10000): | |
optimizer.zero_grad() | |
input = torch.randn(10, 1000, 5) | |
output = model(input) | |
loss = criterion(output, target_transform(input)) | |
loss.backward() | |
optimizer.step() | |
if epoch % 100 == 0: | |
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, 10000, loss.item())) | |
model.eval() | |
with torch.no_grad(): | |
input = torch.randn(10, 3, 5) | |
output = model(input) | |
print('====') | |
print(input) | |
print('====') | |
print(output) | |
print('====') | |
print(target_transform(input)) | |
print('====') | |
print(criterion(output, target_transform(input))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment