Last active
March 16, 2019 19:22
-
-
Save ruslo/1a71797a74a0f58afaae78034e50636a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
.. _tutorial-from-mxnet: | |
Compile MXNet Models | |
==================== | |
**Author**: `Joshua Z. Zhang <https://zhreshold.github.io/>`_ | |
This article is an introductory tutorial to deploy mxnet models with NNVM. | |
For us to begin with, mxnet module is required to be installed. | |
A quick solution is | |
.. code-block:: bash | |
pip install mxnet --user | |
or please refer to offical installation guide. | |
https://mxnet.incubator.apache.org/versions/master/install/index.html | |
""" | |
# some standard imports | |
import mxnet as mx | |
import nnvm | |
import tvm | |
import numpy as np | |
###################################################################### | |
# Download Resnet18 model from Gluon Model Zoo | |
# --------------------------------------------- | |
# In this section, we download a pretrained imagenet model and classify an image. | |
from mxnet.gluon.model_zoo.vision import get_model | |
from mxnet.gluon.utils import download | |
from PIL import Image | |
block = get_model('resnet18_v1', pretrained=True) | |
img_name = 'cat.png' | |
synset_url = ''.join(['https://gist.githubusercontent.com/zhreshold/', | |
'4d0b62f3d01426887599d4f7ede23ee5/raw/', | |
'596b27d23537e5a1b5751d2b0481ef172f58b539/', | |
'imagenet1000_clsid_to_human.txt']) | |
synset_name = 'synset.txt' | |
download('https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true', img_name) | |
download(synset_url, synset_name) | |
with open(synset_name) as f: | |
synset = eval(f.read()) | |
image = Image.open(img_name).resize((224, 224)) | |
def transform_image(image): | |
image = np.array(image) - np.array([123., 117., 104.]) | |
image /= np.array([58.395, 57.12, 57.375]) | |
image = image.transpose((2, 0, 1)) | |
image = image[np.newaxis, :] | |
return image | |
x = transform_image(image) | |
print('x', x.shape) | |
###################################################################### | |
# Compile the Graph | |
# ----------------- | |
# Now we would like to port the Gluon model to a portable computational graph. | |
# It's as easy as several lines. | |
# We support MXNet static graph(symbol) and HybridBlock in mxnet.gluon | |
sym, params = nnvm.frontend.from_mxnet(block) | |
# we want a probability so add a softmax operator | |
sym = nnvm.sym.softmax(sym) | |
###################################################################### | |
# now compile the graph | |
import nnvm.compiler | |
target = 'llvm' # <<<<<<<<<<<<<<<<<<<<<<<<<<< Configuration without GPU | |
shape_dict = {'data': x.shape} | |
with nnvm.compiler.build_config(opt_level=3): | |
graph, lib, params = nnvm.compiler.build(sym, target, shape_dict, params=params) | |
###################################################################### | |
# Execute the portable graph on TVM | |
# --------------------------------- | |
# Now, we would like to reproduce the same forward computation using TVM. | |
from tvm.contrib import graph_runtime | |
ctx = tvm.cpu(0) # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Configuration without GPU | |
dtype = 'float32' | |
m = graph_runtime.create(graph, lib, ctx) | |
# set inputs | |
m.set_input('data', tvm.nd.array(x.astype(dtype))) | |
m.set_input(**params) | |
# execute | |
m.run() | |
# get outputs | |
tvm_output = m.get_output(0) | |
top1 = np.argmax(tvm_output.asnumpy()[0]) | |
print('TVM prediction top-1:', top1, synset[top1]) | |
###################################################################### | |
# Use MXNet symbol with pretrained weights | |
# ---------------------------------------- | |
# MXNet often use `arg_params` and `aux_params` to store network parameters | |
# separately, here we show how to use these weights with existing API | |
def block2symbol(block): | |
data = mx.sym.Variable('data') | |
sym = block(data) | |
args = {} | |
auxs = {} | |
for k, v in block.collect_params().items(): | |
args[k] = mx.nd.array(v.data().asnumpy()) | |
return sym, args, auxs | |
mx_sym, args, auxs = block2symbol(block) | |
# usually we would save/load it as checkpoint | |
mx.model.save_checkpoint('resnet18_v1', 0, mx_sym, args, auxs) | |
# there are 'resnet18_v1-0000.params' and 'resnet18_v1-symbol.json' on disk | |
###################################################################### | |
# for a normal mxnet model, we start from here | |
mx_sym, args, auxs = mx.model.load_checkpoint('resnet18_v1', 0) | |
# now we use the same API to get NNVM compatible symbol | |
nnvm_sym, nnvm_params = nnvm.frontend.from_mxnet(mx_sym, args, auxs) | |
# repeat the same steps to run this model using TVM |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment