Created
April 18, 2025 22:22
-
-
Save ryanpadilha/955efe2c5438a15604f77d6c746179a1 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# 1. Bag of Words | |
from sklearn.feature_extraction.text import CountVectorizer | |
corpus = ["gato dormindo", "cachorro latindo", "gato e cachorro brincando"] | |
vectorizer = CountVectorizer() | |
X = vectorizer.fit_transform(corpus) | |
print("Vocabulário:", vectorizer.get_feature_names_out()) | |
print("Matriz de contagem (Bag of Words):") | |
print(X.toarray()) | |
# 2. TF-IDF | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
vectorizer = TfidfVectorizer() | |
X = vectorizer.fit_transform(corpus) | |
print("Vocabulário:", vectorizer.get_feature_names_out()) | |
print("Matriz TF-IDF:") | |
print(X.toarray()) | |
# 3. Word2Vec (Skip-gram) | |
import gensim | |
from gensim.models import Word2Vec | |
from nltk.tokenize import word_tokenize | |
import nltk | |
nltk.download('punkt_tab') | |
# Pré-processamento simples | |
corpus = ["gato dormindo", "cachorro latindo", "gato e cachorro brincando"] | |
tokenized = [word_tokenize(frase.lower()) for frase in corpus] | |
# Treinando modelo Skip-gram | |
model = Word2Vec(sentences=tokenized, vector_size=10, window=2, sg=1, min_count=1) | |
# Vetores das palavras | |
for word in model.wv.index_to_key: | |
print(f"Vetor para '{word}': {model.wv[word]}") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment