Created
August 23, 2018 12:29
-
-
Save rygorous/7a8153faf2e72a4c5aff3700e292e89e to your computer and use it in GitHub Desktop.
Restoring and nonrestoring binary division
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/python3 | |
# Per's code | |
def sw_binary_divide2(n, d, num_bits): | |
q = 0 | |
r = n | |
d2 = d << (num_bits - 1) | |
for i in range(num_bits): | |
q <<= 1 | |
if r >= d2: | |
q |= 1 | |
r -= d2 | |
r <<= 1 | |
return q | |
# Modified variant 1 | |
def sw_binary_divide3(n, d, num_bits): | |
q = 0 | |
r = n | |
d2 = d << num_bits | |
for i in range(num_bits): | |
q <<= 1 | |
r <<= 1 | |
if r >= d2: | |
q |= 1 | |
r -= d2 | |
return q | |
# Modified variant 2 | |
def sw_binary_divide4(n, d, num_bits): | |
q = 0 | |
r = n | |
for i in range(num_bits): | |
q <<= 1 | |
r <<= 1 | |
if (r >> num_bits) >= d: | |
q |= 1 | |
r -= d << num_bits | |
return q | |
# Modified variant 3 (one shift register only) | |
def sw_binary_divide5(n, d, num_bits): | |
qr = n | |
low_mask = (1 << num_bits) - 1 | |
for i in range(num_bits): | |
qr <<= 1 | |
hi_diff = (qr >> num_bits) - d | |
if hi_diff >= 0: | |
qr = (hi_diff << num_bits) | (qr & low_mask) | 1 | |
return qr & low_mask | |
def nonrestoring_divide(n, d, num_bits): | |
qr = n | |
ds = d << num_bits | |
for i in range(num_bits): | |
qr <<= 1 | |
# NOTE only actually need an adder in the high half of qr | |
# the low half never changes | |
if qr >= 0: | |
qr = (qr | 1) - ds | |
else: | |
qr += ds | |
# final complement step | |
q = (qr << 1) & ((1 << num_bits) - 1) | |
r = qr >> num_bits | |
if r < 0: | |
r += d | |
else: | |
q += 1 | |
assert n == q*d + r | |
return q | |
# More hardware-y! | |
def nonrestoring_divide2(n, d, num_bits): | |
qr = n | |
ds = d << num_bits | |
for i in range(num_bits): | |
ispos = 1 if qr >= 0 else 0 | |
# NOTE only actually need an adder in the high half of qr | |
# the low half never changes | |
qr = ((qr << 1) | ispos) + (ds ^ -ispos) + ispos | |
# final complement step | |
q = (qr << 1) & ((1 << num_bits) - 1) | |
r = qr >> num_bits | |
if r < 0: | |
r += d | |
else: | |
q += 1 | |
assert n == q*d + r | |
assert 0 <= r < d | |
return q | |
# Clean up final step | |
def nonrestoring_divide3(n, d, num_bits): | |
qr = n | |
ds = d << num_bits | |
for i in range(num_bits): | |
ispos = 1 if qr >= 0 else 0 | |
# NOTE only actually need an adder in the high half of qr | |
# the low half never changes | |
qr = ((qr << 1) | ispos) + (ds ^ -ispos) + ispos | |
# final complement step | |
lomask = (1 << num_bits) - 1 | |
# note q - ~q = q + ~(~q) + 1 = q+q+1 = (q<<1) + 1 | |
# instead of adding 1 to q always then subtracting 1 if r<0, | |
# add ispos, same as in the main iteration. | |
ispos = 1 if qr >= 0 else 0 | |
q = ((qr << 1) | ispos) & lomask | |
# d & (ispos-1) <=> d if !ispos, 0 otherwise | |
r = (qr >> num_bits) + (d & (ispos - 1)) | |
assert n == q*d + r | |
assert 0 <= r < d | |
return q | |
def test_divide(division_alg, N): | |
for a in range(1 << N): | |
for b in range(1, 1 << N): | |
q = division_alg(a, b, N) | |
assert q == a // b | |
#test_divide(sw_binary_divide2, 8) | |
test_divide(sw_binary_divide5, 8) | |
#test_divide(nonrestoring_divide, 8) | |
#test_divide(nonrestoring_divide2, 8) | |
test_divide(nonrestoring_divide3, 8) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment