Last active
July 8, 2024 14:03
-
-
Save salvatorecapolupo/3a845e7b5865f770107bfb356be652b2 to your computer and use it in GitHub Desktop.
Emulate a Markov process in Python 3, with a transition graph and an editable matrix. Source / Explanation: https://lipercubo.it/catene-di-markov.html
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import random | |
import matplotlib.pyplot as plt | |
import networkx as nx | |
from matplotlib.animation import FuncAnimation | |
# Definizione degli stati e delle transizioni della catena di Markov | |
states = ["salve", "ciao", "buongiorno", "buonasera", "hey"] | |
transitions = { | |
"salve": {"ciao": 0.3, "buongiorno": 0.3, "buonasera": 0.2, "hey": 0.2}, | |
"ciao": {"salve": 0.2, "buongiorno": 0.3, "buonasera": 0.2, "hey": 0.3}, | |
"buongiorno": {"salve": 0.25, "ciao": 0.25, "buonasera": 0.25, "hey": 0.25}, | |
"buonasera": {"salve": 0.3, "ciao": 0.3, "buongiorno": 0.2, "hey": 0.2}, | |
"hey": {"salve": 0.25, "ciao": 0.25, "buongiorno": 0.25, "buonasera": 0.25} | |
} | |
# Funzione per scegliere il prossimo stato basato sulle probabilità di transizione | |
def next_state(current_state): | |
next_states = list(transitions[current_state].keys()) | |
probabilities = list(transitions[current_state].values()) | |
return random.choices(next_states, probabilities)[0] | |
# Generazione di una sequenza di saluti | |
def generate_greetings(start_state, n): | |
current_state = start_state | |
greetings = [current_state] | |
for _ in range(n - 1): | |
current_state = next_state(current_state) | |
greetings.append(current_state) | |
return greetings | |
# Generiamo una sequenza di 10 saluti partendo da "salve" | |
greetings_sequence = generate_greetings("salve", 10) | |
# Visualizzazione del processo con un grafo animato | |
G = nx.MultiDiGraph() | |
for state in states: | |
for next_state, prob in transitions[state].items(): | |
G.add_edge(state, next_state, weight=prob) | |
pos = nx.spring_layout(G) | |
fig, ax = plt.subplots() | |
def update(num): | |
ax.clear() | |
current_state = greetings_sequence[num] | |
color_map = ['red' if node == current_state else 'skyblue' for node in G.nodes()] | |
nx.draw(G, pos, with_labels=True, node_color=color_map, node_size=3000, font_size=16, ax=ax) | |
labels = {e: f'{G.edges[e]["weight"]:.2f}' for e in G.edges} | |
nx.draw_networkx_edge_labels(G, pos, edge_labels=labels, ax=ax) | |
ax.set_title(f"Saluto attuale: {current_state}") | |
ani = FuncAnimation(fig, update, frames=len(greetings_sequence), interval=1000, repeat=True) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment