Last active
November 23, 2022 21:34
-
-
Save sergiospagnuolo/a706ecc55f9cc519066f574700c51e8b to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
suppressMessages(library(odbc)) | |
suppressMessages(library(DBI)) | |
suppressMessages(library(RPostgreSQL)) | |
suppressMessages(library(tidyverse)) | |
suppressMessages(library(tidytext)) | |
suppressMessages(library(wordcloud2)) | |
suppressMessages(library(lubridate)) | |
library(config) | |
library(ngram) | |
print(paste("Batch Wordcloud iniciado - ", Sys.time() - hours(3))) | |
db <- dbConnect(RPostgres::Postgres(), | |
dbname = "postgres", | |
host = "", | |
port = 5432, | |
user = "", | |
password = "") | |
d <- dbGetQuery(db, 'SELECT "id", "title", "date", "authorityId" | |
FROM "new_agenda-transparente"."scraped_schedule" | |
WHERE "date" > NOW()::date - INTERVAL \'720 days\' | |
ORDER BY "date" DESC') | |
######################################################################################################################################################################################### STOPWORDS | |
stopwords_pt <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vRutQtQqbFVYYP8uwytSyewxtxn19smtWWxsoNai9G6uEg6ytF7Z4IVhYZ5rXx4bgN-IYkSnsF8bSAe/pub?gid=1009958428&single=true&output=csv", header = T) | |
bigram_stop <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vRutQtQqbFVYYP8uwytSyewxtxn19smtWWxsoNai9G6uEg6ytF7Z4IVhYZ5rXx4bgN-IYkSnsF8bSAe/pub?gid=58185156&single=true&output=csv", header = T) %>% .$bigram | |
################################# | |
############ GERA OS BIGRAMAS | |
################################# | |
# bigrama <- function(d) { | |
# c <- d %>% | |
# unnest_tokens(bigram, title, token = "ngrams", n = 2) %>% | |
# separate(bigram, c("word1", "word2"), sep = " ") %>% | |
# filter( | |
# !word1 %in% stopwords_pt$word, # remove stopwords from both words in bi-gram | |
# !word2 %in% stopwords_pt$word, | |
# !str_detect(word1, pattern = "[[:digit:]]"), # removes any words with numeric digits | |
# !str_detect(word2, pattern = "[[:digit:]]"), | |
# !str_detect(word1, pattern = "[[:punct:]]"), # removes any remaining punctuations | |
# !str_detect(word2, pattern = "[[:punct:]]"), | |
# !str_detect(word1, pattern = "(.)\\1{2,}"), # removes any words with 3 or more repeated letters | |
# !str_detect(word2, pattern = "(.)\\1{2,}"), | |
# !str_detect(word1, pattern = "\\b(.)\\b"), # removes any remaining single letter words | |
# !str_detect(word2, pattern = "\\b(.)\\b") | |
# ) %>% | |
# unite("bigram", c(word1, word2), sep = " ") %>% | |
# count(bigram, authorityId) %>% | |
# filter(n >= 2) %>% | |
# #slice_max(n, n = 100) %>% | |
# #filter(!bigram %in% bigram_stop) %>% | |
# mutate(bigram = str_to_upper(bigram)) %>% | |
# arrange(desc(n)) %>% | |
# rename(freq = n, words = bigram) | |
# } | |
unigrama <- function(d) { | |
d %>% | |
unnest_tokens(unigram, title, token = "ngrams", n = 1) %>% | |
filter( | |
!unigram %in% stopwords_pt$word, # remove stopwords from both words in bi-gram | |
!str_detect(unigram, pattern = "[[:digit:]]"), # removes any words with numeric digits | |
!str_detect(unigram, pattern = "[[:punct:]]"), # removes any remaining punctuations | |
!str_detect(unigram, pattern = "(.)\\1{2,}"), # removes any words with 3 or more repeated letters | |
!str_detect(unigram, pattern = "\\b(.)\\b"), # removes any remaining single letter words | |
) %>% | |
count(unigram, authorityId) %>% | |
filter(n >= 6) %>% | |
#slice_max(n, n = 100) %>% | |
filter(!unigram %in% stopwords_pt) %>% | |
mutate(unigram = str_to_upper(unigram)) %>% | |
arrange(desc(n)) %>% | |
rename(freq = n, words = unigram) | |
} | |
################################# | |
############ GERA O DATA FRAME | |
################################# | |
a <- d %>% | |
group_split(authorityId) %>% | |
purrr::map_df(unigrama) | |
#purrr::map_df(bigrama) | |
# a <- a %>% filter(freq > 15) | |
# set.seed(seed = 14412) | |
# a$id <- as.vector(sample(1000000000, size = nrow(a), replace = TRUE)) | |
# a <- a %>% select(id, words, authorityId, freq) | |
##################################### | |
############ GRAVA NO BANCO DE DADOS | |
##################################### | |
# DELETE TEMPORARY TABLE (before writing it) | |
dbExecute(db, 'DROP TABLE IF EXISTS wordcloud_agendas_temp CASCADE') | |
# WRITE TABLE WITH TEMPORARY DATA FRESH FROM THE DB | |
dbWriteTable(db, 'wordcloud_agendas_temp', a, row.names=F) | |
# INSERE NOVOS DADOS NA TABELA PRINCIPAL | |
dbExecute(db, ' | |
DELETE FROM public.wordcloud_agendas; | |
') | |
dbExecute(db, ' | |
INSERT INTO public.wordcloud_agendas (words,"authorityId",freq) | |
SELECT "words", "authorityId", "freq"::integer | |
FROM public.wordcloud_agendas_temp; | |
') | |
# DELETE TEMPORARY TABLE (after writing it) | |
dbExecute(db, 'DROP TABLE IF EXISTS wordcloud_agendas_temp CASCADE') | |
################################# | |
############ FECHA DB | |
################################# | |
dbDisconnect(db) | |
rm(list = ls()) | |
print(paste("Batch Wordcloud encerrado - ", Sys.time() - hours(3))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment