Created
July 17, 2017 19:22
-
-
Save shugert/91d931267e8c3906ee7bc85303b2eeea to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# fully-conected layer | |
def dense(x, inputFeatures, outputFeatures, scope=None, with_w=False): | |
with tf.variable_scope(scope or "Linear"): | |
matrix = tf.get_variable("Matrix", [inputFeatures, outputFeatures], tf.float32, tf.random_normal_initializer(stddev=0.02)) | |
bias = tf.get_variable("bias", [outputFeatures], initializer=tf.constant_initializer(0.0)) | |
if with_w: | |
return tf.matmul(x, matrix) + bias, matrix, bias | |
else: | |
return tf.matmul(x, matrix) + bias | |
# merge images | |
def merge(images, size): | |
h, w = images.shape[1], images.shape[2] | |
img = np.zeros((h * size[0], w * size[1])) | |
for idx, image in enumerate(images): | |
i = idx % size[1] | |
j = idx / size[1] | |
img[j*h:j*h+h, i*w:i*w+w] = image | |
return img | |
# save image on local machine | |
def ims(name, img): | |
# print img[:10][:10] | |
scipy.misc.toimage(img, cmin=0, cmax=1).save(name) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment