Created
November 5, 2018 20:08
-
-
Save sigma23/425a45930a4ca25088d7c7ffcf623936 to your computer and use it in GitHub Desktop.
Multiclass Roc curves
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.metrics import roc_curve, auc | |
# Compute ROC curve and ROC area for each class | |
fpr = dict() | |
tpr = dict() | |
roc_auc = dict() | |
for i in range(n_classes): | |
fpr[i], tpr[i], _ = roc_curve(y[:, i], preds[:, i]) | |
roc_auc[i] = auc(fpr[i], tpr[i]) | |
# Compute micro-average ROC curve and ROC area | |
fpr["micro"], tpr["micro"], _ = roc_curve(y.ravel(), preds.ravel()) | |
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) | |
for class_num in range(n_classes): | |
plt.figure() | |
lw = 2 | |
plt.plot(fpr[class_num], tpr[class_num], color='darkorange', | |
lw=lw, label='ROC curve (area = %0.2f)' % roc_auc[class_num]) | |
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') | |
plt.xlim([0.0, 1.0]) | |
plt.ylim([0.0, 1.05]) | |
plt.xlabel('False Positive Rate') | |
plt.ylabel('True Positive Rate') | |
plt.title('ROC - {}'.format(le.inverse_transform([class_num])[0])) | |
plt.legend(loc="lower right") | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment