-
-
Save silent-vim/4b47604c537b7bd779a7543c28117016 to your computer and use it in GitHub Desktop.
A pyTorch attention layer for torchMoji model
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Attention(Module): | |
""" | |
Computes a weighted average of channels across timesteps (1 parameter pr. channel). | |
""" | |
def __init__(self, attention_size, return_attention=False): | |
""" Initialize the attention layer | |
# Arguments: | |
attention_size: Size of the attention vector. | |
return_attention: If true, output will include the weight for each input token | |
used for the prediction | |
""" | |
super(Attention, self).__init__() | |
self.return_attention = return_attention | |
self.attention_size = attention_size | |
self.attention_vector = Parameter(torch.FloatTensor(attention_size)) | |
def __repr__(self): | |
s = '{name}({attention_size}, return attention={return_attention})' | |
return s.format(name=self.__class__.__name__, **self.__dict__) | |
def forward(self, inputs, input_lengths): | |
""" Forward pass. | |
# Arguments: | |
inputs (Torch.Variable): Tensor of input sequences | |
input_lengths (torch.LongTensor): Lengths of the sequences | |
# Return: | |
Tuple with (representations and attentions if self.return_attention else None). | |
""" | |
logits = inputs.matmul(self.attention_vector) | |
unnorm_ai = (logits - logits.max()).exp() | |
# Compute a mask for the attention on the padded sequences | |
# See e.g. https://discuss.pytorch.org/t/self-attention-on-words-and-masking/5671/5 | |
max_len = unnorm_ai.size(1) | |
idxes = torch.arange(0, max_len, out=torch.LongTensor(max_len)).unsqueeze(0) | |
if torch.cuda.is_available(): | |
idxes = idxes.cuda() | |
mask = Variable((idxes < input_lengths.unsqueeze(1)).float()) | |
# apply mask and renormalize attention scores (weights) | |
masked_weights = unnorm_ai * mask | |
att_sums = masked_weights.sum(dim=1, keepdim=True) # sums per sequence | |
attentions = masked_weights.div(att_sums) | |
# apply attention weights | |
weighted = torch.mul(inputs, attentions.unsqueeze(-1).expand_as(inputs)) | |
# get the final fixed vector representations of the sentences | |
representations = weighted.sum(dim=1) | |
return (representations, attentions if self.return_attention else None) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment