Last active
February 16, 2018 22:56
-
-
Save silgon/500c106429a191960e2be44ffc31ba11 to your computer and use it in GitHub Desktop.
Frequency Prediction
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# code to solve https://stackoverflow.com/q/47932589/2237916 | |
import numpy as np | |
import tflearn | |
from random import shuffle | |
# parameters | |
n_input=100 | |
n_train=2000 | |
n_test = 500 | |
# generate data | |
xs=[] | |
ys=[] | |
frequencies = np.linspace(1,50,n_train+n_test) | |
shuffle(frequencies) | |
t=np.linspace(0,2*np.pi,n_input) | |
for freq in frequencies: | |
xs.append(np.sin(t*freq)) | |
ys.append(freq) | |
xs_train = np.array(xs[:n_train]) | |
ys_train = np.array(ys[:n_train]).reshape(-1,1) | |
xs_test = np.array(xs[n_train:]) | |
ys_test = np.array(ys[n_train:]).reshape(-1,1) | |
# WARNING: either Deep Network or LSTM network can be use. | |
# Please comment the code that is not going to be used | |
# Deep network | |
net = tflearn.input_data(shape=[None, n_input]) | |
net = tflearn.fully_connected(net, 100) | |
net = tflearn.fully_connected(net, 100) | |
net = tflearn.fully_connected(net, 1) | |
net = tflearn.regression(net, optimizer='adam',loss='mean_square') | |
model = tflearn.DNN(net) | |
model.fit(xs_train, ys_train) | |
print(np.hstack((model.predict(xs_test),ys_test))[:10]) | |
xs_train=np.array(xs[:n_train]).reshape(n_train,n_input,1) | |
xs_test=np.array(xs[n_train:]).reshape(n_test,n_input,1) | |
# LSTM network prediction | |
net = tflearn.input_data(shape=[None, n_input, 1]) | |
net = tflearn.lstm(net, 10) | |
net = tflearn.fully_connected(net, 100, activation="relu") | |
net = tflearn.fully_connected(net, 1) | |
net = tflearn.regression(net, optimizer='adam', loss='mean_square') | |
model = tflearn.DNN(net) | |
model.fit(xs_train, ys_train, n_epoch=100) | |
print(np.hstack((model.predict(xs_test),ys_test))[:10]) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import tensorflow as tf | |
from random import shuffle | |
# parameters | |
n_input=100 | |
n_train=2000 | |
n_test = 500 | |
# generate data | |
xs=[] | |
ys=[] | |
frequencies = np.linspace(1,50,n_train+n_test) | |
shuffle(frequencies) | |
t=np.linspace(0,2*np.pi,n_input) | |
for freq in frequencies: | |
xs.append(np.sin(t*freq)) | |
ys.append(freq) | |
xs_train = np.array(xs[:n_train]) | |
ys_train = np.array(ys[:n_train]).reshape(-1,1) | |
xs_test = np.array(xs[n_train:]) | |
ys_test = np.array(ys[n_train:]).reshape(-1,1) | |
# WARNING: either Deep Network or LSTM network can be use. | |
# Please comment the code that is not going to be used | |
# Deep network | |
x_ = tf.placeholder(shape=[None, n_input], dtype=tf.float32, name="input") | |
y_ = tf.placeholder(shape=[None, 1], dtype=tf.float32, name="output") | |
x = tf.layers.dense(x_, 100) | |
x = tf.layers.dense(x, 100) | |
logits = tf.layers.dense(x, 1) | |
def mse(logits, outputs): | |
mse = tf.reduce_mean(tf.pow(logits-outputs, 2.0)) | |
return mse | |
loss = mse(logits, y_) | |
trainer = tf.train.AdamOptimizer(learning_rate=0.001) | |
# trainer=tf.contrib.keras.optimizers.Adam() | |
updateModel = trainer.minimize(loss) | |
n_epochs = 100 | |
sess=tf.Session() | |
sess.run(tf.initialize_all_variables()) | |
for i in range(n_epochs): | |
sess.run(updateModel, feed_dict={x_:xs_train, y_: ys_train}) | |
ys_test_ = sess.run(logits, feed_dict={x_:xs_test}) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment