Created
October 14, 2016 12:44
-
-
Save simonkamronn/3f915001654b6398b8c9eb0c81bc5214 to your computer and use it in GitHub Desktop.
K Means in TensorFlow
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# From https://gist.github.com/narphorium/d06b7ed234287e319f18 | |
import tensorflow as tf | |
def kMeansCluster(vector_values, num_clusters, max_num_steps, stop_coeficient = 0.0): | |
vectors = tf.constant(vector_values) | |
centroids = tf.Variable(tf.slice(tf.random_shuffle(vectors), | |
[0,0],[num_clusters,-1])) | |
old_centroids = tf.Variable(tf.zeros([num_clusters,2])) | |
centroid_distance = tf.Variable(tf.zeros([num_clusters,2])) | |
expanded_vectors = tf.expand_dims(vectors, 0) | |
expanded_centroids = tf.expand_dims(centroids, 1) | |
print expanded_vectors.get_shape() | |
print expanded_centroids.get_shape() | |
distances = tf.reduce_sum( | |
tf.square(tf.sub(expanded_vectors, expanded_centroids)), 2) | |
assignments = tf.argmin(distances, 0) | |
means = tf.concat(0, [ | |
tf.reduce_mean( | |
tf.gather(vectors, | |
tf.reshape( | |
tf.where( | |
tf.equal(assignments, c) | |
),[1,-1]) | |
),reduction_indices=[1]) | |
for c in xrange(num_clusters)]) | |
save_old_centroids = tf.assign(old_centroids, centroids) | |
update_centroids = tf.assign(centroids, means) | |
init_op = tf.initialize_all_variables() | |
performance = tf.assign(centroid_distance, tf.sub(centroids, old_centroids)) | |
check_stop = tf.reduce_sum(tf.abs(performance)) | |
with tf.Session() as sess: | |
sess.run(init_op) | |
for step in xrange(max_num_steps): | |
print "Running step " + str(step) | |
sess.run(save_old_centroids) | |
_, centroid_values, assignment_values = sess.run([update_centroids, | |
centroids, | |
assignments]) | |
sess.run(check_stop) | |
current_stop_coeficient = check_stop.eval() | |
print "coeficient:", current_stop_coeficient | |
if current_stop_coeficient <= stop_coeficient: | |
break | |
return centroid_values, assignment_values |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment