Last active
November 2, 2017 23:47
-
-
Save sitkevij/fd0287af469f2956a5e682a1f321796f to your computer and use it in GitHub Desktop.
Factored discrete Fourier transform, or FFT, and its inverse iFFT - http://www.math.wustl.edu/~victor/mfmm/fourier/
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <assert.h> | |
#include <math.h> | |
#include <stdio.h> | |
#include <stdlib.h> | |
#define q 3 /* for 2^3 points */ | |
#define N (1<<q) /* N-point FFT, iFFT */ | |
typedef float real; | |
typedef struct{ | |
real Re; | |
real Im; | |
} complex; | |
#ifndef PI | |
# define PI 3.14159265358979323846264338327950288 | |
#endif | |
/* Print a vector of complexes as ordered pairs. */ | |
static void print_vector(const char *title, complex *x, int n) | |
{ | |
int i; | |
printf("%s (dim=%d):", title, n); | |
for(i=0; i<n; i++ ) | |
printf(" %5.2f,%5.2f ", x[i].Re,x[i].Im); | |
putchar('\n'); | |
return; | |
} | |
/* | |
fft(v,N): | |
[0] If N==1 then return. | |
[1] For k = 0 to N/2-1, let ve[k] = v[2*k] | |
[2] Compute fft(ve, N/2); | |
[3] For k = 0 to N/2-1, let vo[k] = v[2*k+1] | |
[4] Compute fft(vo, N/2); | |
[5] For m = 0 to N/2-1, do [6] through [9] | |
[6] Let w.re = cos(2*PI*m/N) | |
[7] Let w.im = -sin(2*PI*m/N) | |
[8] Let v[m] = ve[m] + w*vo[m] | |
[9] Let v[m+N/2] = ve[m] - w*vo[m] | |
*/ | |
void fft( complex *v, int n, complex *tmp ) | |
{ | |
if(n>1) { /* otherwise, do nothing and return */ | |
int k,m; complex z, w, *vo, *ve; | |
ve = tmp; vo = tmp+n/2; | |
for(k=0; k<n/2; k++) { | |
ve[k] = v[2*k]; | |
vo[k] = v[2*k+1]; | |
} | |
fft( ve, n/2, v ); /* FFT on even-indexed elements of v[] */ | |
fft( vo, n/2, v ); /* FFT on odd-indexed elements of v[] */ | |
for(m=0; m<n/2; m++) { | |
w.Re = cos(2*PI*m/(double)n); | |
w.Im = -sin(2*PI*m/(double)n); | |
z.Re = w.Re*vo[m].Re - w.Im*vo[m].Im; /* Re(w*vo[m]) */ | |
z.Im = w.Re*vo[m].Im + w.Im*vo[m].Re; /* Im(w*vo[m]) */ | |
v[ m ].Re = ve[m].Re + z.Re; | |
v[ m ].Im = ve[m].Im + z.Im; | |
v[m+n/2].Re = ve[m].Re - z.Re; | |
v[m+n/2].Im = ve[m].Im - z.Im; | |
} | |
} | |
return; | |
} | |
/* | |
ifft(v,N): | |
[0] If N==1 then return. | |
[1] For k = 0 to N/2-1, let ve[k] = v[2*k] | |
[2] Compute ifft(ve, N/2); | |
[3] For k = 0 to N/2-1, let vo[k] = v[2*k+1] | |
[4] Compute ifft(vo, N/2); | |
[5] For m = 0 to N/2-1, do [6] through [9] | |
[6] Let w.re = cos(2*PI*m/N) | |
[7] Let w.im = sin(2*PI*m/N) | |
[8] Let v[m] = ve[m] + w*vo[m] | |
[9] Let v[m+N/2] = ve[m] - w*vo[m] | |
*/ | |
void ifft( complex *v, int n, complex *tmp ) | |
{ | |
if(n>1) { /* otherwise, do nothing and return */ | |
int k,m; complex z, w, *vo, *ve; | |
ve = tmp; vo = tmp+n/2; | |
for(k=0; k<n/2; k++) { | |
ve[k] = v[2*k]; | |
vo[k] = v[2*k+1]; | |
} | |
ifft( ve, n/2, v ); /* FFT on even-indexed elements of v[] */ | |
ifft( vo, n/2, v ); /* FFT on odd-indexed elements of v[] */ | |
for(m=0; m<n/2; m++) { | |
w.Re = cos(2*PI*m/(double)n); | |
w.Im = sin(2*PI*m/(double)n); | |
z.Re = w.Re*vo[m].Re - w.Im*vo[m].Im; /* Re(w*vo[m]) */ | |
z.Im = w.Re*vo[m].Im + w.Im*vo[m].Re; /* Im(w*vo[m]) */ | |
v[ m ].Re = ve[m].Re + z.Re; | |
v[ m ].Im = ve[m].Im + z.Im; | |
v[m+n/2].Re = ve[m].Re - z.Re; | |
v[m+n/2].Im = ve[m].Im - z.Im; | |
} | |
} | |
return; | |
} | |
int main(void) | |
{ | |
complex v[N], v1[N], scratch[N]; | |
int k; | |
/* Fill v[] with a function of known FFT: */ | |
for(k=0; k<N; k++) { | |
v[k].Re = 0.125*cos(2*PI*k/(double)N); | |
v[k].Im = 0.125*sin(2*PI*k/(double)N); | |
v1[k].Re = 0.3*cos(2*PI*k/(double)N); | |
v1[k].Im = -0.3*sin(2*PI*k/(double)N); | |
} | |
/* FFT, iFFT of v[]: */ | |
print_vector("Orig", v, N); | |
fft( v, N, scratch ); | |
print_vector(" FFT", v, N); | |
ifft( v, N, scratch ); | |
print_vector("iFFT", v, N); | |
/* FFT, iFFT of v1[]: */ | |
print_vector("Orig", v1, N); | |
fft( v1, N, scratch ); | |
print_vector(" FFT", v1, N); | |
ifft( v1, N, scratch ); | |
print_vector("iFFT", v1, N); | |
exit(EXIT_SUCCESS); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment