Created
June 14, 2020 15:42
-
-
Save solaris33/70054ff1ca33b897d18170800ae7dc1f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow_datasets as tfds | |
import tensorflow as tf | |
import matplotlib.pyplot as plt | |
def plot_graphs(history, metric): | |
plt.plot(history.history[metric]) | |
plt.plot(history.history['val_'+metric], '') | |
plt.xlabel("Epochs") | |
plt.ylabel(metric) | |
plt.legend([metric, 'val_'+metric]) | |
plt.show() | |
def main(): | |
dataset, info = tfds.load('imdb_reviews/subwords8k', with_info=True, | |
as_supervised=True) | |
train_dataset, test_dataset = dataset['train'], dataset['test'] | |
encoder = info.features['text'].encoder | |
print('Vocabulary size: {}'.format(encoder.vocab_size)) | |
sample_string = 'Hello TensorFlow.' | |
encoded_string = encoder.encode(sample_string) | |
print('Encoded string is {}'.format(encoded_string)) | |
original_string = encoder.decode(encoded_string) | |
print('The original string: "{}"'.format(original_string)) | |
assert original_string == sample_string | |
for index in encoded_string: | |
print('{} ----> {}'.format(index, encoder.decode([index]))) | |
BUFFER_SIZE = 10000 | |
BATCH_SIZE = 64 | |
train_dataset = train_dataset.shuffle(BUFFER_SIZE) | |
train_dataset = train_dataset.padded_batch(BATCH_SIZE) | |
test_dataset = test_dataset.padded_batch(BATCH_SIZE) | |
model = tf.keras.Sequential([ | |
tf.keras.layers.Embedding(encoder.vocab_size, 64), | |
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64)), | |
tf.keras.layers.Dense(64, activation='relu'), | |
tf.keras.layers.Dense(1) | |
]) | |
model.compile(loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), | |
optimizer=tf.keras.optimizers.Adam(1e-4), | |
metrics=['accuracy']) | |
history = model.fit(train_dataset, epochs=10, | |
validation_data=test_dataset, | |
validation_steps=30) | |
test_loss, test_acc = model.evaluate(test_dataset) | |
print('Test Loss: {}'.format(test_loss)) | |
print('Test Accuracy: {}'.format(test_acc)) | |
def pad_to_size(vec, size): | |
zeros = [0] * (size - len(vec)) | |
vec.extend(zeros) | |
return vec | |
def sample_predict(sample_pred_text, pad): | |
encoded_sample_pred_text = encoder.encode(sample_pred_text) | |
if pad: | |
encoded_sample_pred_text = pad_to_size(encoded_sample_pred_text, 64) | |
encoded_sample_pred_text = tf.cast(encoded_sample_pred_text, tf.float32) | |
predictions = model.predict(tf.expand_dims(encoded_sample_pred_text, 0)) | |
return (predictions) | |
# predict on a sample text without padding. | |
sample_pred_text = ('The movie was cool. The animation and the graphics ' | |
'were out of this world. I would recommend this movie.') | |
predictions = sample_predict(sample_pred_text, pad=False) | |
print(predictions) | |
# predict on a sample text with padding | |
sample_pred_text = ('The movie was cool. The animation and the graphics ' | |
'were out of this world. I would recommend this movie.') | |
predictions = sample_predict(sample_pred_text, pad=True) | |
print(predictions) | |
plot_graphs(history, 'accuracy') | |
plot_graphs(history, 'loss') | |
# Stack two or more LSTM layers | |
model = tf.keras.Sequential([ | |
tf.keras.layers.Embedding(encoder.vocab_size, 64), | |
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64, return_sequences=True)), | |
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32)), | |
tf.keras.layers.Dense(64, activation='relu'), | |
tf.keras.layers.Dropout(0.5), | |
tf.keras.layers.Dense(1) | |
]) | |
model.compile(loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), | |
optimizer=tf.keras.optimizers.Adam(1e-4), | |
metrics=['accuracy']) | |
history = model.fit(train_dataset, epochs=10, | |
validation_data=test_dataset, | |
validation_steps=30) | |
test_loss, test_acc = model.evaluate(test_dataset) | |
print('Test Loss: {}'.format(test_loss)) | |
print('Test Accuracy: {}'.format(test_acc)) | |
# predict on a sample text without padding. | |
sample_pred_text = ('The movie was not good. The animation and the graphics ' | |
'were terrible. I would not recommend this movie.') | |
predictions = sample_predict(sample_pred_text, pad=False) | |
print(predictions) | |
# predict on a sample text with padding | |
sample_pred_text = ('The movie was not good. The animation and the graphics ' | |
'were terrible. I would not recommend this movie.') | |
predictions = sample_predict(sample_pred_text, pad=True) | |
print(predictions) | |
plot_graphs(history, 'accuracy') | |
plot_graphs(history, 'loss') | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment