Created
May 31, 2020 07:12
-
-
Save solaris33/89bb8e7c96ba1afc9b922942e05082a8 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from tensorflow import keras | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import random | |
import json | |
import requests | |
def show(idx, title): | |
plt.figure(figsize=(12, 3)) | |
plt.imshow(test_images[idx].reshape(28,28)) | |
plt.axis('off') | |
plt.title('\n\n{}'.format(title), fontdict={'size': 16}) | |
plt.show() | |
fashion_mnist = keras.datasets.fashion_mnist | |
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() | |
# scale the values to 0.0 to 1.0 | |
test_images = test_images / 255.0 | |
# reshape for feeding into the model | |
test_images = test_images.reshape(test_images.shape[0], 28, 28, 1) | |
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', | |
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] | |
print('test_images.shape: {}, of {}'.format(test_images.shape, test_images.dtype)) | |
rando = random.randint(0,len(test_images)-1) | |
show(rando, 'An Example Image: {}'.format(class_names[test_labels[rando]])) | |
data = json.dumps({"signature_name": "serving_default", "instances": test_images[0:3].tolist()}) | |
print('Data: {} ... {}'.format(data[:50], data[len(data)-52:])) | |
# send data using POST request and receive prediction result | |
headers = {"content-type": "application/json"} | |
json_response = requests.post('http://localhost:8501/v1/models/fashion_model:predict', data=data, headers=headers) | |
predictions = json.loads(json_response.text)['predictions'] | |
# show first prediction result | |
show(0, 'The model thought this was a {} (class {}), and it was actually a {} (class {})'.format( | |
class_names[np.argmax(predictions[0])], np.argmax(predictions[0]), class_names[test_labels[0]], test_labels[0])) | |
# set model version and send data using POST request and receive prediction result | |
json_response = requests.post('http://localhost:8501/v1/models/fashion_model/versions/1:predict', data=data, headers=headers) | |
predictions = json.loads(json_response.text)['predictions'] | |
# show all prediction result | |
for i in range(0,3): | |
show(i, 'The model thought this was a {} (class {}), and it was actually a {} (class {})'.format( | |
class_names[np.argmax(predictions[i])], np.argmax(predictions[i]), class_names[test_labels[i]], test_labels[i])) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment