Last active
November 7, 2024 11:24
-
-
Save spro/ef26915065225df65c1187562eca7ec4 to your computer and use it in GitHub Desktop.
PyTorch RNN training example
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
from torch.autograd import Variable | |
from torch import optim | |
import numpy as np | |
import math, random | |
# Generating a noisy multi-sin wave | |
def sine_2(X, signal_freq=60.): | |
return (np.sin(2 * np.pi * (X) / signal_freq) + np.sin(4 * np.pi * (X) / signal_freq)) / 2.0 | |
def noisy(Y, noise_range=(-0.05, 0.05)): | |
noise = np.random.uniform(noise_range[0], noise_range[1], size=Y.shape) | |
return Y + noise | |
def sample(sample_size): | |
random_offset = random.randint(0, sample_size) | |
X = np.arange(sample_size) | |
Y = noisy(sine_2(X + random_offset)) | |
return Y | |
# Define the model | |
class SimpleRNN(nn.Module): | |
def __init__(self, hidden_size): | |
super(SimpleRNN, self).__init__() | |
self.hidden_size = hidden_size | |
self.inp = nn.Linear(1, hidden_size) | |
self.rnn = nn.LSTM(hidden_size, hidden_size, 2, dropout=0.05) | |
self.out = nn.Linear(hidden_size, 1) | |
def step(self, input, hidden=None): | |
input = self.inp(input.view(1, -1)).unsqueeze(1) | |
output, hidden = self.rnn(input, hidden) | |
output = self.out(output.squeeze(1)) | |
return output, hidden | |
def forward(self, inputs, hidden=None, force=True, steps=0): | |
if force or steps == 0: steps = len(inputs) | |
outputs = Variable(torch.zeros(steps, 1, 1)) | |
for i in range(steps): | |
if force or i == 0: | |
input = inputs[i] | |
else: | |
input = output | |
output, hidden = self.step(input, hidden) | |
outputs[i] = output | |
return outputs, hidden | |
n_epochs = 100 | |
n_iters = 50 | |
hidden_size = 10 | |
model = SimpleRNN(hidden_size) | |
criterion = nn.MSELoss() | |
optimizer = optim.SGD(model.parameters(), lr=0.01) | |
losses = np.zeros(n_epochs) # For plotting | |
for epoch in range(n_epochs): | |
for iter in range(n_iters): | |
_inputs = sample(50) | |
inputs = Variable(torch.from_numpy(_inputs[:-1]).float()) | |
targets = Variable(torch.from_numpy(_inputs[1:]).float()) | |
# Use teacher forcing 50% of the time | |
force = random.random() < 0.5 | |
outputs, hidden = model(inputs, None, force) | |
optimizer.zero_grad() | |
loss = criterion(outputs, targets) | |
loss.backward() | |
optimizer.step() | |
losses[epoch] += loss.data[0] | |
if epoch > 0: | |
print(epoch, loss.data[0]) | |
# Use some plotting library | |
# if epoch % 10 == 0: | |
# show_plot('inputs', _inputs, True) | |
# show_plot('outputs', outputs.data.view(-1), True) | |
# show_plot('losses', losses[:epoch] / n_iters) | |
# Generate a test | |
# outputs, hidden = model(inputs, False, 50) | |
# show_plot('generated', outputs.data.view(-1), True) | |
# Online training | |
hidden = None | |
while True: | |
inputs = get_latest_sample() | |
outputs, hidden = model(inputs, hidden) | |
optimizer.zero_grad() | |
loss = criterion(outputs, inputs) | |
loss.backward() | |
optimizer.step() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Worked on this idea, fixed some of the issues. It was a great idea to use sine to do stuff with RNN, thanks!