Created
April 24, 2024 10:50
-
-
Save srmsoumya/75ddd63a437461e4ea378a72ae4d1feb to your computer and use it in GitHub Desktop.
Simple Lightning trainer
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import torch | |
from torch import nn | |
from torch.utils.data import DataLoader, TensorDataset | |
import lightning as L | |
# Generate a synthetic dataset | |
def generate_data(num_samples): | |
# Generate random integers | |
data = torch.randint(0, 1000, (num_samples, 1)).float() | |
# Labels are 1 if the number is odd, 0 if even | |
labels = data % 2 | |
return TensorDataset(data, labels) | |
class EvenOddDataset(L.LightningDataModule): | |
def __init__(self, batch_size=32): | |
super().__init__() | |
self.batch_size = batch_size | |
def setup(self, stage=None): | |
if stage == "fit" or stage is None: | |
self.train_dataset = generate_data(800) | |
self.val_dataset = generate_data(200) | |
def train_dataloader(self): | |
return DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=True) | |
def val_dataloader(self): | |
return DataLoader(self.val_dataset, batch_size=self.batch_size) | |
class SimpleClassifier(L.LightningModule): | |
def __init__(self): | |
super().__init__() | |
self.layer = nn.Sequential( | |
nn.Linear(1, 10), | |
nn.ReLU(), | |
nn.Linear(10, 2), | |
) | |
def forward(self, x): | |
for layer in self.layer: | |
x = layer(x) | |
return x | |
def training_step(self, batch, batch_idx): | |
x, y = batch | |
y_hat = self(x) | |
loss = nn.functional.cross_entropy(y_hat, y.long().squeeze()) | |
return loss | |
def validation_step(self, batch, batch_idx): | |
x, y = batch | |
y_hat = self(x) | |
loss = nn.functional.cross_entropy(y_hat, y.long().squeeze()) | |
self.log("val_loss", loss) | |
def configure_optimizers(self): | |
return torch.optim.Adam(self.parameters(), lr=0.001) | |
# Create the model | |
model = SimpleClassifier() | |
dm = EvenOddDataset() | |
# CPU | |
# trainer = L.Trainer(max_epochs=10, accelerator="cpu", num_nodes=1) | |
# Multi GPU | |
trainer_gpu = L.Trainer(max_epochs=10, accelerator="auto", devices="auto", num_nodes=1) | |
# # MultiNode | |
# trainer_gpu = L.Trainer(max_epochs=1, accelerator="auto", devices="auto", num_nodes=2, strategy="ddp") | |
trainer_gpu.fit(model, dm) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment