Created
April 13, 2024 23:05
-
-
Save stevenheidel/629e7b020695e28e0bcd110ccf7a3355 to your computer and use it in GitHub Desktop.
RealWorldQA on gpt-4-turbo
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from tenacity import retry | |
import asyncio | |
import os | |
import base64 | |
import openai | |
import sys | |
import json | |
from tqdm.asyncio import tqdm | |
import pandas as pd | |
client = openai.AsyncClient() | |
folder = "/Users/stevenh/Downloads/realworldqa/" | |
parallelism = 50 | |
def encode_image(image_path): | |
with open(image_path, "rb") as image_file: | |
return base64.b64encode(image_file.read()).decode('utf-8') | |
@retry | |
async def ask_gpt_with_image(base64_image, question): | |
response = await client.chat.completions.create( | |
model="gpt-4-turbo", | |
temperature=0.7, | |
messages=[ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "image_url", | |
"image_url": { | |
"url": f"data:image/jpeg;base64,{base64_image}", | |
"detail": "high", | |
} | |
}, | |
{"type": "text", "text": question}, | |
] | |
}, | |
], | |
) | |
return response.choices[0].message.content | |
async def process_entry(entry): | |
image = entry["image"] | |
question = entry["question"] | |
expected_answer = entry["answer"] | |
image_path = os.path.join(folder, "images", entry["image"]) | |
base64_image = encode_image(image_path) | |
gpt_answer = await ask_gpt_with_image(base64_image, question) | |
return { | |
"question": question, | |
"image": image, | |
"expected_answer": expected_answer, | |
"gpt_answer": gpt_answer, | |
} | |
with open(os.path.join(folder, "annotations.json")) as f: | |
entries = json.load(f) | |
semaphore = asyncio.Semaphore(parallelism) | |
tqdm_bar = tqdm(total=len(entries), file=sys.stdout) | |
async def task(entry): | |
async with semaphore: | |
result = await process_entry(entry) | |
tqdm_bar.update(1) | |
return result | |
results = await asyncio.gather(*[task(entry) for entry in entries]) | |
df = pd.DataFrame(results) | |
def get_formatted_answer(row): | |
answer = row["gpt_answer"] | |
answer = answer.split(".")[0].split(":")[0] | |
subs = { | |
"zero": "0", "none": "0", | |
"one": "1", "two": "2", "three": "3", "four": "4", "five": "5", | |
"six": "6", "seven": "7", "eight": "8", "nine": "9", "ten": "10", | |
"true": "yes", "false": "no", | |
} | |
return subs.get(answer.lower(), answer) | |
df["gpt_formatted_answer"] = df.apply(get_formatted_answer, axis=1) | |
df["match"] = df.apply( | |
lambda row: row["gpt_formatted_answer"].lower() == row["expected_answer"].lower(), | |
axis=1 | |
) | |
print(df["match"].mean()) | |
# 0.6313725490196078 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment