adb install -r 替换已存在的应用程序,也就是说强制安装
adb install -l 锁定该应用程序
adb install -t 允许测试包
adb install -s 把应用程序安装到sd卡上
adb install -d 允许进行将见状,也就是安装的比手机上带的版本低
adb install -r 替换已存在的应用程序,也就是说强制安装
adb install -l 锁定该应用程序
adb install -t 允许测试包
adb install -s 把应用程序安装到sd卡上
adb install -d 允许进行将见状,也就是安装的比手机上带的版本低
start bluestack or emulator install app on it start the app
connect adb to emulator
$ adb connect localhost:5555
get 'pid' of your app .Dont forget to run it first in emulator
You should install VirtualBox and Vagrant before you start.
You should create a Vagrantfile
in an empty directory with the following content:
key通常指私钥 | |
CSR 是Certificate Signing Request的缩写,即证书签名申请,这不是证书,这是要求CA给证书签名的一种正是申请,该申请包含申请证书的实体的公钥及该实体店某些信息。该数据将成为证书的一部分。CSR始终使用它携带的公钥所对应的私钥进行签名。 | |
CRT 即 certificate的缩写,即证书 | |
TLS:传输层安全协议 Transport Layer Security的缩写 | |
SSL:安全套接字层 Secure Socket Layer的缩写 |
sudo su
杀死进程
ps -ef | grep LVS
kill -9 $PID
删除文件夹
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
from __future__ import unicode_literals | |
import argparse | |
import h5py | |
import json | |
import os | |
import scipy.misc |
# | |
# this gist can be used to list all targets, or - more correctly - rules, | |
# that are defined in a Makefile (and possibly other included Makefiles) | |
# and is inspired by Jack Kelly's reply to a StackOverflow question: | |
# | |
# http://stackoverflow.com/questions/3063507/list-goals-targets-in-gnu-make/3632592#3632592 | |
# | |
# I also found this script - http://www.shelldorado.com/scripts/cmds/targets - which does | |
# something similar using awk, but it extracts targets from the "static" rules from a single | |
# Makefile, meaning it ignores any included Makefiles, as well as targets from "dynamic" rules |
import tensorflow as tf | |
from tensorflow.python.platform import gfile | |
with tf.Session() as sess: | |
model_filename ='PATH_TO_PB.pb' | |
with gfile.FastGFile(model_filename, 'rb') as f: | |
graph_def = tf.GraphDef() | |
graph_def.ParseFromString(f.read()) | |
g_in = tf.import_graph_def(graph_def) | |
LOGDIR='/logs/tests/1/' | |
train_writer = tf.summary.FileWriter(LOGDIR) |