Skip to content

Instantly share code, notes, and snippets.

@superseppl
Created March 3, 2020 15:05
Show Gist options
  • Save superseppl/50d3828f2334ef034b058d612f47aa07 to your computer and use it in GitHub Desktop.
Save superseppl/50d3828f2334ef034b058d612f47aa07 to your computer and use it in GitHub Desktop.
## License: Apache 2.0. See LICENSE file in root directory.
## Copyright(c) 2015-2017 Intel Corporation. All Rights Reserved.
###############################################
## Open CV and Numpy integration ##
###############################################
import pyrealsense2 as rs
import numpy as np
import cv2
# Configure depth and color streams
pipeline = rs.pipeline()
config = rs.config()
config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)
align = rs.align(rs.stream.color)
# Start streaming
pipeline.start(config)
try:
while True:
# Wait for a coherent pair of frames: depth and color
frames = pipeline.wait_for_frames()
#depth_frame = frames.get_depth_frame()
aligned_frames = align.process(frames)
# Get aligned frames
aligned_depth_frame = aligned_frames.get_depth_frame() # aligned_depth_frame is a 640x480 depth image
color_frame = aligned_frames.get_color_frame()
if not aligned_depth_frame or not color_frame:
continue
depth_frame = aligned_depth_frame
# color_frame = aligned_frames.first(rs.stream.color)
#
# color_frame = frames.get_color_frame()
# depth_frame = pipeline.wait_for_frames().get_depth_frame().as_depth_frame()
# if not depth_frame or not color_frame:
# continue
# Convert images to numpy arrays
depth_image = np.asanyarray(depth_frame.get_data())
color_image = np.asanyarray(color_frame.get_data())
pixel_distance_in_meters = depth_frame.get_distance(100,100)
print(pixel_distance_in_meters)
pc = rs.pointcloud()
points = pc.calculate(depth_frame)
pc.map_to(color_frame)
#cv2.imshow('Color Frame', color_frame)
# Apply colormap on depth image (image must be converted to 8-bit per pixel first)
depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_image, alpha=0.03), cv2.COLORMAP_JET)
# Stack both images horizontally
images = np.hstack((color_image, depth_colormap))
# Show images
cv2.namedWindow('RealSense', cv2.WINDOW_AUTOSIZE)
cv2.imshow('RealSense', images)
cv2.waitKey(1)
finally:
# Stop streaming
pipeline.stop()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment