Created
May 31, 2025 03:17
-
-
Save svaniksharma/15fa1b0dbd0aca853f6e6bef0011bdb0 to your computer and use it in GitHub Desktop.
Using `ggml_cont`
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include "ggml-cpu.h" | |
#include "ggml.h" | |
#include <iostream> | |
void print_tensor(struct ggml_tensor *tensor) { | |
for (size_t i = 0; i < tensor->ne[3]; i++) { | |
for (size_t k = 0; k < tensor->ne[2]; k++) { | |
for (size_t j = 0; j < tensor->ne[1]; j++) { | |
for (size_t l = 0; l < tensor->ne[0]; l++) { | |
std::cout << ggml_get_i32_nd(tensor, l, j, k, i) << " "; | |
} | |
std::cout << "\n"; | |
} | |
std::cout << "\n"; | |
} | |
std::cout << "\n"; | |
} | |
} | |
int main (int argc, char *argv[]) { | |
struct ggml_init_params params = { | |
1024 * ggml_tensor_overhead(), | |
nullptr, | |
false | |
}; | |
struct ggml_context *ctx = ggml_init(params); | |
// Creates an array with values 0, 1, 2, ..., 15 | |
const int N = 16; | |
int values[N] = { 0 }; | |
for (int i = 0; i < N; i++) | |
values[i] = i; | |
struct ggml_tensor *tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N); | |
for (int i = 0; i < N; i++) | |
ggml_set_i32_1d(tensor, i, values[i]); | |
struct ggml_tensor *t = ggml_reshape_4d(ctx, tensor, 2, 2, 4, 1); | |
std::cout << "Original tensor\n--------------\n"; | |
print_tensor(t); | |
// 0 -> 1, 1 -> 2, 2 -> 0, 3 -> 3 | |
struct ggml_tensor *permuted_t = ggml_permute(ctx, t, 1, 2, 0, 3); | |
std::cout << "Permuted tensor\n--------------\n"; | |
std::cout << "New Shape: " << permuted_t->ne[0] << " x " << permuted_t->ne[1] << " x " << permuted_t->ne[2] << " x " << permuted_t->ne[3] << "\n"; | |
GGML_ASSERT(permuted_t->ne[0] == 4); | |
GGML_ASSERT(permuted_t->ne[1] == 2); | |
GGML_ASSERT(permuted_t->ne[2] == 2); | |
GGML_ASSERT(permuted_t->ne[3] == 1); | |
print_tensor(permuted_t); | |
struct ggml_tensor *cont_permuted_t = ggml_cont(ctx, permuted_t); | |
struct ggml_tensor *a = ggml_reshape_2d(ctx, cont_permuted_t, 2, 8); | |
GGML_ASSERT(a->ne[0] == 2); | |
GGML_ASSERT(a->ne[1] == 8); | |
GGML_ASSERT(a->ne[2] == 1); | |
GGML_ASSERT(a->ne[3] == 1); | |
std::cout << "All zeros since we haven't computed anything\n"; | |
print_tensor(a); // NOTE: Should get all zeros! | |
// Build computational graph | |
struct ggml_cgraph *gf = ggml_new_graph(ctx); | |
ggml_build_forward_expand(gf, a); | |
ggml_graph_compute_with_ctx(ctx, gf, 1); | |
// Try printing the tensor | |
std::cout << "Now-contiguous tensor after we perform the computation\n"; | |
print_tensor(a); | |
ggml_free(ctx); | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I created this because I was confused on
ggml_cont
and why it (seemingly) was not working as intended. I wrote a short article accompanying this gist here