Created
May 10, 2019 16:52
-
-
Save talesa/57535997916cd28c8eb9583d018882a7 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class OrthogonalLinear(nn.Module): | |
""" Implements a non-square linear with orthogonal colums """ | |
def __init__(self, input_size, output_size, lr_factor=0.1): | |
super(OrthogonalLinear, self).__init__() | |
self.input_size = input_size | |
self.output_size = output_size | |
self.max_size = max(self.input_size, self.output_size) | |
self.log_orthogonal_kernel = nn.Parameter(torch.Tensor(self.max_size, self.max_size)) | |
self.log_orthogonal_kernel.register_hook(lambda: print("This should not be executed")) | |
self.register_buffer('orthogonal_kernel', torch.empty(self.max_size, self.max_size, requires_grad=True)) | |
self.orthogonal_kernel.register_hook(self.orthogonal_kernel_grad_hook) | |
self.log_orthogonal_kernel.data = \ | |
torch.as_tensor(self.skew_initializer(self.max_size), | |
dtype=self.log_orthogonal_kernel.dtype, | |
device=self.log_orthogonal_kernel.device) | |
self.orthogonal_kernel.data = self._B | |
self.lr_factor = lr_factor | |
@property | |
def _A(self): | |
A = self.log_orthogonal_kernel.data | |
A = A.triu(diagonal=1) | |
return A - A.t() | |
@property | |
def _B(self): | |
return expm(self._A) | |
def orthogonal_kernel_grad_hook(self, orthogonal_kernel_grad): | |
A = self._A | |
B = self.orthogonal_kernel.data | |
G = orthogonal_kernel_grad | |
BtG = B.t().mm(G) | |
grad = 0.5*(BtG - BtG.t()) | |
frechet_deriv = B.mm(expm_frechet(-A, grad)) | |
self.log_orthogonal_kernel.grad = self.lr_factor * (frechet_deriv - frechet_deriv.t()).triu(diagonal=1) | |
return None | |
def forward(self, input): | |
self.orthogonal_kernel.data = self._B | |
if self.orthogonal_kernel.grad is not None: | |
self.orthogonal_kernel.grad.data.zero_() | |
return input.matmul(self.orthogonal_kernel[:self.input_size, :self.output_size]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment