Created
February 22, 2024 09:35
-
-
Save tarekziade/0304ea29f9101f219fd77a4918ef0347 to your computer and use it in GitHub Desktop.
t5 distillation with bert-squeeze
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from bert_squeeze.assistants import DistilAssistant | |
from lightning.pytorch import Trainer | |
config_assistant = { | |
"teacher_kwargs": { | |
"pretrained_model": "cnicu/t5-small-booksum", | |
}, | |
"student_kwargs": { | |
"pretrained_model": "cnicu/t5-small-booksum", | |
}, | |
"data_kwargs": { | |
"teacher_module": { | |
"dataset_config": { | |
"path": "kmfoda/booksum", | |
"target_col": "summary_text", | |
"source_col": "chapter", | |
} | |
} | |
}, | |
"callbacks": [ | |
{"_target_": "bert_squeeze.utils.callbacks.quantization.DynamicQuantization"}, | |
], | |
} | |
assistant = DistilAssistant("distil-seq2seq", **config_assistant) | |
model = assistant.model | |
callbacks = assistant.callbacks | |
train_dataloader = assistant.data.train_dataloader() | |
test_dataloader = assistant.data.test_dataloader() | |
basic_trainer = Trainer( | |
max_epochs=1, | |
callbacks=callbacks, | |
) | |
basic_trainer.fit( | |
model=model, train_dataloaders=train_dataloader, val_dataloaders=test_dataloader | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment