Skip to content

Instantly share code, notes, and snippets.

View tekumara's full-sized avatar
🥚

Oliver Mannion tekumara

🥚
View GitHub Profile
@jlia0
jlia0 / agent loop
Last active April 19, 2025 23:09
Manus tools and prompts
You are Manus, an AI agent created by the Manus team.
You excel at the following tasks:
1. Information gathering, fact-checking, and documentation
2. Data processing, analysis, and visualization
3. Writing multi-chapter articles and in-depth research reports
4. Creating websites, applications, and tools
5. Using programming to solve various problems beyond development
6. Various tasks that can be accomplished using computers and the internet
@transitive-bullshit
transitive-bullshit / claude-code-prompts.js
Last active April 17, 2025 20:18
Unminified prompts and tool definitions for Claude Code
// Claude Code is a Beta product per Anthropic's Commercial Terms of Service.
// By using Claude Code, you agree that all code acceptance or rejection decisions you make,
// and the associated conversations in context, constitute Feedback under Anthropic's Commercial Terms,
// and may be used to improve Anthropic's products, including training models.
// You are responsible for reviewing any code suggestions before use.
// (c) Anthropic PBC. All rights reserved. Use is subject to Anthropic's Commercial Terms of Service (https://www.anthropic.com/legal/commercial-terms).
// Version: 0.2.9
@kalomaze
kalomaze / gist:37c70e022cb1e9428ebb1ee7a4b52275
Last active April 5, 2025 10:57
GRPO Reinforcement Learning - 7b GSM8k on 8xH100 / 8xA100
# the "verifiers" repository is a clean implementation of templated GRPO reinforcement learning training environments
# this is a generic set of "install from scratch" commands complete with a deepspeed z3 config that i have been using when i spin up nodes
# it will run on the gsm8k example w/ default batch size & generation size (8), and the 8th GPU is used for vllm generations
# qwen 14b full finetuning will run on this configuration too without LoRA or CUDA OOM, at least for the gsm8k task's context sizes + generation lengths
# hyperparameters are controlled by `verifiers/utils/config_utils.py`; i have been preferring extreme grad clipping (between 0.001 and 0.01) and low beta (under 0.01)
# NOTE FEB 27: examples have moved into `verifiers/examples` not `/examples`
cd /root
mkdir boom
@trappitsch
trappitsch / README.md
Last active January 14, 2025 11:51
PyApp packaging for air-gapped computers

Package PyApp app with batteries included

This is just a quick write up - mostly for myself - on how to create a python PyApp package for an air-gapped machine. This means that all dependencies, etc., will be included.

@andyjessop
andyjessop / prompt.txt
Created April 20, 2024 07:43
A prompt to categorise and analyse sentiment for GitHub issues
Please analyze the following GitHub issue data, which is provided as a JSON object:
{
"title": "🐛 BUG: WebSocket typing doesn't work in apps that also pull in DOM types",
"body": "Which Cloudflare product(s) does this pertain to?",
}
Provide a response with the following structure:
<json>
@dhh
dhh / linux-setup.sh
Last active April 19, 2025 20:44
linux-setup.sh
# THIS LINUX SETUP SCRIPT HAS MORPHED INTO A WHOLE PROJECT: HTTPS://OMAKUB.ORG
# PLEASE CHECKOUT THAT PROJECT INSTEAD OF THIS OUTDATED SETUP SCRIPT.
#
#
# Libraries and infrastructure
sudo apt update -y
sudo apt install -y \
docker.io docker-buildx \
build-essential pkg-config autoconf bison rustc cargo clang \
import asyncio
import copy
import hashlib
import json
import os
import random
from dataclasses import dataclass
from typing import Any, Dict, List, Optional
import numpy as np
@kalomaze
kalomaze / llm_samplers_explained.md
Last active April 19, 2025 10:39
LLM Samplers Explained

LLM Samplers Explained

Everytime a large language model makes predictions, all of the thousands of tokens in the vocabulary are assigned some degree of probability, from almost 0%, to almost 100%. There are different ways you can decide to choose from those predictions. This process is known as "sampling", and there are various strategies you can use which I will cover here.

OpenAI Samplers

Temperature

  • Temperature is a way to control the overall confidence of the model's scores (the logits). What this means is that, if you use a lower value than 1.0, the relative distance between the tokens will become larger (more deterministic), and if you use a larger value than 1.0, the relative distance between the tokens becomes smaller (less deterministic).
  • 1.0 Temperature is the original distribution that the model was trained to optimize for, since the scores remain the same.
  • Graph demonstration with voiceover: https://files.catbox.moe/6ht56x.mp4
@yoavg
yoavg / GM-level-chess-without-search.md
Last active April 1, 2025 04:44
Grand-master Level Chess without Search

Grand-master Level Chess without Search: Modeling Choices and their Implications

Yoav Golderg, February 2024.


Researchers at Google DeepMind released a paper about a learned systems that is able to play blitz-chess at a grandmaster level, without using search. This is interesting and imagination-capturing, because up to now computer-chess systems that play at this level, either based on machine-learning or not, did use a search component.[^1]

Indeed, my first reaction when reading the paper was to tweet wow, crazy and interesting. I still find it crazy and interesting, but upon a closer read, it may not be as crazy and as interesting as I initially thought. Many reactions on twitter, reddit, etc, were super-impressed, going into implications about projected learning abilities of AI systems, the ability of neural networks to learn semantics from observations, etc, which are really over-the-top. The paper does not claim any of them, but they are still perceiv

@mitchellh
mitchellh / merge_vs_rebase_vs_squash.md
Last active March 18, 2025 21:32
Merge vs. Rebase vs. Squash

I get asked pretty regularly what my opinion is on merge commits vs rebasing vs squashing. I've typed up this response so many times that I've decided to just put it in a gist so I can reference it whenever it comes up again.

I use merge, squash, rebase all situationally. I believe they all have their merits but their usage depends on the context. I think anyone who says any particular strategy is the right answer 100% of the time is wrong, but I think there is considerable acceptable leeway in when you use each. What follows is my personal and professional opinion: