Skip to content

Instantly share code, notes, and snippets.

@terasakisatoshi
Created January 4, 2025 11:20
Show Gist options
  • Save terasakisatoshi/ab6ff7de7b80300a829cd786eae00a24 to your computer and use it in GitHub Desktop.
Save terasakisatoshi/ab6ff7de7b80300a829cd786eae00a24 to your computer and use it in GitHub Desktop.
DeepSeek v3 の生成結果
using AbstractAlgebra
# 多項式環を定義
R, x = PolynomialRing(QQ, "x")
# Hopf代数の構造を実装
struct HopfAlgebra
base_ring
generator
end
# 積(Multiplication)
function multiply(a::HopfAlgebra, b::HopfAlgebra)
return HopfAlgebra(a.base_ring, a.generator * b.generator)
end
# 単位元(Unit)
function unit(HA::HopfAlgebra)
return HopfAlgebra(HA.base_ring, one(HA.base_ring))
end
# 余積(Comultiplication)
function comultiplication(a::HopfAlgebra)
return (HopfAlgebra(a.base_ring, a.generator), HopfAlgebra(a.base_ring, a.generator))
end
# 余単位元(Counit)
function counit(a::HopfAlgebra)
return evaluate(a.generator, 1) # x=1 で評価
end
# 対合(Antipode)
function antipode(a::HopfAlgebra)
return HopfAlgebra(a.base_ring, -a.generator)
end
# 例: Hopf代数の要素を作成
a = HopfAlgebra(R, x)
b = HopfAlgebra(R, x^2)
# 積を計算
prod_ab = multiply(a, b)
println("積 a * b: ", prod_ab.generator)
# 余積を計算
coprod_a = comultiplication(a)
println("余積 Δ(a): ", coprod_a[1].generator, "", coprod_a[2].generator)
# 余単位元を計算
counit_a = counit(a)
println("余単位元 ε(a): ", counit_a)
# 対合を計算
antipode_a = antipode(a)
println("対合 S(a): ", antipode_a.generator)
@terasakisatoshi
Copy link
Author

注意:

R, x = PolynomialRing(QQ, "x") は誤りである.この部分は小文字にして polynomial_ring(QQ, "x") にすると動作する.
試してないが,アイデアの基礎は作ることができた.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment