Created
May 9, 2020 20:12
-
-
Save theogf/4944dea6603a2b48c317dcb163a6b817 to your computer and use it in GitHub Desktop.
Implementation of the sinkhorn algorithm
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using Makie | |
using MakieLayout | |
using LinearAlgebra, Distances | |
using Distributions | |
α = MixtureModel([Normal(0.2, 0.05), Normal(0.6, 0.06), Normal(0.8, 0.04)], [0.3, 0.5, 0.2]) | |
# β = Normal(0.3, 0.09) | |
β = Laplace(0.5, 0.1) | |
xmin = 0.0 | |
xmax = 1.0 | |
x = range(xmin, xmax, length = 100) | |
y = range(xmin, xmax, length = 100) | |
vmin = 0.05 | |
# Discretisation | |
a = pdf.(Ref(α), x) .+ vmin |> x -> x/sum(x) | |
b = pdf.(Ref(β), y) .+ vmin |> x -> x/sum(x) | |
dK(C, ϵ) = exp.(-C / ϵ) | |
dK(x, y, ϵ) = exp(-c(x, y) / ϵ) | |
# Sinkhorn algorithm | |
function sinkhorn(x, y, a, b, ϵ, T = 100) | |
u = ones(length(x)) | |
v = ones(length(y)) | |
K = dK.(x, y', ϵ) | |
for i in 1:T | |
u .= a ./ (K * v) | |
v .= b ./ (K' * u) | |
end | |
return K, u, v | |
end | |
softmin(x, ϵ) = -ϵ * log(sum(exp.(-x/ϵ))) | |
S!(S, C, f, g) = S .= C .- f .- g' | |
# Sinkhorn algorithm in log domain | |
function logsinkhorn(x, y, a, b, ϵ, T = 100) | |
C = pairwise(SqEuclidean(), x', y', dims = 2) | |
K = dK(C, ϵ) | |
f = zeros(length(x)) | |
g = zeros(length(y)) | |
S = similar(K) | |
for i in 1:T | |
S!(S, C, f, g) | |
f .+= softmin.(eachrow(S), ϵ) + ϵ * log.(a) | |
S!(S, C, f, g) | |
g .+= softmin.(eachcol(S), ϵ) + ϵ * log.(b) | |
end | |
return K, exp.(f / ϵ), exp.(g / ϵ) | |
end | |
## | |
ϵ = Node(0.1) # Regularisation parameter | |
ϵtitle = lift(ϵ) do ϵ | |
"π(α, β), log₁₀(ϵ) = $(round(log10(ϵ), digits = 3))" | |
end | |
P = lift(ϵ) do ϵ | |
K, u, v = logsinkhorn(x, y, a, b, ϵ, 1000) | |
v' .* K .* u | |
end | |
K, u, v = logsinkhorn(x, y, a, b, ϵ[], 200) | |
scene = Scene(resolution = (1200, 675), camera=campixel!) | |
layout = GridLayout( | |
scene, 2, 2, | |
colsizes = [Auto(), Relative(0.25)], | |
rowsizes = [Relative(0.25), Auto()], | |
alignmode = Outside(20, 20, 20, 20) | |
) | |
palpha = layout[1,1] = LAxis(scene, title = "p(α)") | |
plot!(palpha, x, a, linewidth = 3.0, color = :blue, resolution = (500, 300)) | |
hidexdecorations!(palpha) | |
xlims!(palpha, extrema(x)) | |
pbeta = layout[2,2] = LAxis(scene, title = "p(β)") | |
plot!(pbeta, b, y, linewidth = 3.0, color = :red) | |
hideydecorations!(pbeta) | |
ylims!(pbeta, extrema(y)) | |
pbeta.xticks = MakieLayout.LinearTicks(3) | |
pπ = layout[2,1] = LAxis(scene, title = ϵtitle) | |
linkxaxes!(pπ, palpha) | |
linkyaxes!(pπ, pbeta) | |
update_limits!(scene) | |
contour!(pπ, x, y, P, fillrange = true, linewidth = 0.0) | |
save(joinpath(@__DIR__, "evolution regularized_kantorovich.png"), scene) | |
## | |
rangeϵ = -3.3:0.1:2 | |
# rangeϵ = vcat(-4:0.1:2, 2:-0.1:-2) | |
record(scene, joinpath(@__DIR__, "evolution regularized_kantorovich.gif"), framerate = 10, 1:length(rangeϵ)) do i | |
ϵ[] = 10.0^(rangeϵ[i]) | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment