Created
April 26, 2017 21:19
-
-
Save thmosqueiro/12b1b8013c316f539389681610dae44b to your computer and use it in GitHub Desktop.
Regression with asymmetric loss function
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pylab as pl | |
from lmfit import minimize, Parameters | |
# Creating some data with some strong random factor | |
x = np.linspace(0, 10, 50) | |
y = (x-3)**2 + np.random.rand( 50 )*5 | |
# Defining residuals using an asymmetric loss function | |
def residual(params, x, data, eps_data): | |
alpha = params['alpha'] | |
beta = params['beta'] | |
delta = params['delta'] | |
model = alpha*x + beta*x**2 + delta | |
dy = (model - data) | |
return dy**2*(np.sign(dy) + 0.8)**2/eps_data | |
# Setting up the optimization environment | |
params = Parameters() | |
params.add('alpha', value=0.1) | |
params.add('beta', value=0.05) | |
params.add('delta', value=1000.) | |
eps_data = 1.0 | |
# Running the optimzation and grabbibg the resulting | |
# parameters back | |
out = minimize(residual, params, args=(x, y, eps_data)) | |
resultparams = out.params.valuesdict() | |
alpha = resultparams['alpha'] | |
beta = resultparams['beta'] | |
delta = resultparams['delta'] | |
# Plotting the results | |
pl.figure() | |
pl.plot( x, y, 'ko' ) | |
pl.plot( x, alpha*x + beta*x**2 + delta, 'r-' ) | |
pl.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment