Skip to content

Instantly share code, notes, and snippets.

@thobroni
Created April 25, 2018 05:24
Show Gist options
  • Save thobroni/fe4ec312d562558fdc5ccfcefb54a086 to your computer and use it in GitHub Desktop.
Save thobroni/fe4ec312d562558fdc5ccfcefb54a086 to your computer and use it in GitHub Desktop.
distance.js
/*!
* JavaScript function to calculate the geodetic distance between two points specified by latitude/longitude using the Vincenty inverse formula for ellipsoids.
*
* Original scripts by Chris Veness
* Taken from http://movable-type.co.uk/scripts/latlong-vincenty.html and optimized / cleaned up by Mathias Bynens <http://mathiasbynens.be/>
* Based on the Vincenty direct formula by T. Vincenty, “Direct and Inverse Solutions of Geodesics on the Ellipsoid with application of nested equations”, Survey Review, vol XXII no 176, 1975 <http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf>
*
* @param {Number} lat1, lon1: first point in decimal degrees
* @param {Number} lat2, lon2: second point in decimal degrees
* @returns {Number} distance in metres between points
*/
function toRad(n) {
return n * Math.PI / 180;
};
function distVincenty(lat1, lon1, lat2, lon2) {
var a = 6378137,
b = 6356752.3142,
f = 1 / 298.257223563, // WGS-84 ellipsoid params
L = toRad(lon2 - lon1),
U1 = Math.atan((1 - f) * Math.tan(toRad(lat1))),
U2 = Math.atan((1 - f) * Math.tan(toRad(lat2))),
sinU1 = Math.sin(U1),
cosU1 = Math.cos(U1),
sinU2 = Math.sin(U2),
cosU2 = Math.cos(U2),
lambda = L,
lambdaP,
iterLimit = 100;
do {
var sinLambda = Math.sin(lambda),
cosLambda = Math.cos(lambda),
sinSigma = Math.sqrt((cosU2 * sinLambda) * (cosU2 * sinLambda) + (cosU1 * sinU2 - sinU1 * cosU2 * cosLambda) * (cosU1 * sinU2 - sinU1 * cosU2 * cosLambda));
if (0 === sinSigma) {
return 0; // co-incident points
};
var cosSigma = sinU1 * sinU2 + cosU1 * cosU2 * cosLambda,
sigma = Math.atan2(sinSigma, cosSigma),
sinAlpha = cosU1 * cosU2 * sinLambda / sinSigma,
cosSqAlpha = 1 - sinAlpha * sinAlpha,
cos2SigmaM = cosSigma - 2 * sinU1 * sinU2 / cosSqAlpha,
C = f / 16 * cosSqAlpha * (4 + f * (4 - 3 * cosSqAlpha));
if (isNaN(cos2SigmaM)) {
cos2SigmaM = 0; // equatorial line: cosSqAlpha = 0 (§6)
};
lambdaP = lambda;
lambda = L + (1 - C) * f * sinAlpha * (sigma + C * sinSigma * (cos2SigmaM + C * cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM)));
} while (Math.abs(lambda - lambdaP) > 1e-12 && --iterLimit > 0);
if (!iterLimit) {
return NaN; // formula failed to converge
};
var uSq = cosSqAlpha * (a * a - b * b) / (b * b),
A = 1 + uSq / 16384 * (4096 + uSq * (-768 + uSq * (320 - 175 * uSq))),
B = uSq / 1024 * (256 + uSq * (-128 + uSq * (74 - 47 * uSq))),
deltaSigma = B * sinSigma * (cos2SigmaM + B / 4 * (cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM) - B / 6 * cos2SigmaM * (-3 + 4 * sinSigma * sinSigma) * (-3 + 4 * cos2SigmaM * cos2SigmaM))),
s = b * A * (sigma - deltaSigma);
return s.toFixed(3); // round to 1mm precision
};
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment