Created
August 27, 2022 17:10
-
-
Save thoppe/09ddf2533c2ed5e9af6d329b64f64765 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
''' | |
Code releated for stack exchange question: | |
https://math.stackexchange.com/questions/4519928/how-do-i-stop-my-normals-from-spreading-out-under-perturbation | |
''' | |
import numpy as np | |
from tqdm import tqdm | |
import pylab as plt | |
import pandas as pd | |
import seaborn as sns | |
from scipy.stats import skew, kurtosis | |
N = 500 | |
dx = 0.01 | |
n_iters = 100_000 | |
X = np.random.normal(size=N) | |
data = [] | |
for i in tqdm(range(n_iters)): | |
X += dx * np.random.normal(size=N) | |
data.append( | |
{ | |
"m1": X.mean(), | |
"m2": X.std(), | |
"m3": skew(X), | |
"m4": kurtosis(X), | |
} | |
) | |
df = pd.DataFrame(data) | |
plt.title(f"{N}-dim indep. norm. vectors perturbated by {dx:0.2f}*N(0,1)") | |
plt.plot(df.m1, label="mu") | |
plt.plot(df.m2, label="std") | |
plt.plot(df.m3, label="skew") | |
plt.plot(df.m4, label="kurtosis") | |
plt.xlabel(f"# of perturbations") | |
plt.legend() | |
sns.despine() | |
plt.savefig("drift_example.png") | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment