Created
November 8, 2021 06:33
-
-
Save tmabraham/6dfecd1972464f71ebff7bee310fdadb to your computer and use it in GitHub Desktop.
For pet classifier: https://github.com/tmabraham/fastai_pet_classifier
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import gradio as gr | |
import fastai | |
import skimage | |
learn = load_learner('export.pkl') | |
labels = learn.dls.vocab | |
def predict(img): | |
img = PILImage.create(img) | |
pred,pred_idx,probs = learn.predict(img) | |
return {labels[i]: float(probs[i]) for i in range(len(labels))} | |
title = "Pet Breed Classifier" | |
description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces." | |
article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>" | |
examples = ['siamese.jpg'] | |
interpretation='default' | |
enable_queue=True | |
gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=len(labels)),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment