Last active
August 29, 2015 14:26
-
-
Save tomotaka/74145b402f84b549a4bd to your computer and use it in GitHub Desktop.
mean calculation benchmark
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import random | |
import time | |
from contextlib import contextmanager | |
data = [] | |
for i in xrange(300000): | |
data.append(random.randint(1, 100000000)) | |
float_data = [] | |
for i in xrange(300000): | |
float_data.append(random.random() * 10000000) | |
@contextmanager | |
def measure(label): | |
t1 = time.time() | |
yield | |
t2 = time.time() | |
print '%s: %.3fsec' % (label, t2 - t1) | |
n = 500 | |
with measure('normal-comprehension'): | |
for i in xrange(n): | |
sum([ float(i) for i in data ]) / len(data) | |
with measure('normal-map'): | |
for i in xrange(n): | |
sum(map(float, data)) / len(data) | |
with measure('normal-last-float-conversoin'): | |
for i in xrange(n): | |
float(sum(data)) / len(data) | |
with measure('normal-float'): | |
for i in xrange(n): | |
sum(float_data) / len(float_data) | |
with measure('numpy-mean'): | |
for i in xrange(n): | |
np.mean(data) | |
with measure('numpy-mean-float'): | |
for i in xrange(n): | |
np.mean(float_data) | |
with measure('numpy-mean-with-numpy-array'): | |
for i in xrange(n): | |
data2 = np.array(data) | |
np.mean(data2) | |
with measure('numpy-mean-with-numpy-array-float'): | |
for i in xrange(n): | |
data2 = np.array(float_data) | |
np.mean(data2) | |
nparray_data = np.array(data) | |
with measure('numpy-mean-to-numpy-array'): | |
for i in xrange(n): | |
np.mean(nparray_data) | |
nparray_float_data = np.array(data) | |
with measure('numpy-mean-to-numpy-array-float'): | |
for i in xrange(n): | |
np.mean(nparray_float_data) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
result on my laptop(MacBook Pro 15inch, 2.8Ghz Core i7 4cores)
normal-comprehension: 28.850sec
normal-map: 13.352sec
normal-last-float-conversoin: 0.855sec
normal-float: 0.815sec
numpy-mean: 6.043sec
numpy-mean-float: 3.352sec
numpy-mean-with-numpy-array: 6.065sec
numpy-mean-with-numpy-array-float: 3.382sec
numpy-mean-to-numpy-array: 0.182sec
numpy-mean-to-numpy-array-float: 0.175sec