Created
April 26, 2017 00:21
-
-
Save tonycao/74d8169227c6931a7b8d5d5952d5fb03 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
layer { | |
name: "Image1" | |
type: "ImageData" | |
top: "img0" | |
include { | |
phase: TRAIN | |
} | |
image_data_param { | |
source: "img1_list.txt" | |
root_folder: "./" | |
batch_size: 8 | |
} | |
} | |
layer { | |
name: "Image2" | |
type: "ImageData" | |
top: "img1" | |
include { | |
phase: TRAIN | |
} | |
image_data_param { | |
source: "img2_list.txt" | |
root_folder: "./" | |
batch_size: 8 | |
} | |
} | |
layer { | |
name: "Flow" | |
type: "FloData" | |
top: "flow_gt_aug" | |
include { | |
phase: TRAIN | |
} | |
image_data_param { | |
source: "flo_list.txt" | |
root_folder: "./" | |
batch_size: 8 | |
} | |
} | |
layer { | |
name: "Image1" | |
type: "ImageData" | |
top: "img0" | |
include { | |
phase: TEST | |
} | |
image_data_param { | |
source: "img1_list_test.txt" | |
root_folder: "./" | |
batch_size: 8 | |
} | |
} | |
layer { | |
name: "Image2" | |
type: "ImageData" | |
top: "img1" | |
include { | |
phase: TEST | |
} | |
image_data_param { | |
source: "img2_list_test.txt" | |
root_folder: "./" | |
batch_size: 8 | |
} | |
} | |
layer { | |
name: "Flow" | |
type: "FloData" | |
top: "flow_gt_aug" | |
include { | |
phase: TEST | |
} | |
image_data_param { | |
source: "flo_list_test.txt" | |
root_folder: "./" | |
batch_size: 8 | |
} | |
} | |
layer { | |
name: "Mean1" | |
type: "Mean" | |
bottom: "img0" | |
top: "img0_aug" | |
mean_param { | |
operation: SUBTRACT | |
input_scale: 0.0039216 | |
value: 0.411451 | |
value: 0.432060 | |
value: 0.450141 | |
} | |
} | |
layer { | |
name: "Mean2" | |
type: "Mean" | |
bottom: "img1" | |
top: "img1_aug" | |
mean_param { | |
operation: SUBTRACT | |
input_scale: 0.0039216 | |
value: 0.410602 | |
value: 0.431021 | |
value: 0.448553 | |
} | |
} | |
layer { | |
name: "Eltwise3" | |
type: "Eltwise" | |
bottom: "flow_gt_aug" | |
top: "scaled_flow_gt" | |
eltwise_param { | |
operation: SUM | |
coeff: 0.05 | |
} | |
} | |
layer { | |
name: "Concat1" | |
type: "Concat" | |
bottom: "img0_aug" | |
bottom: "img1_aug" | |
top: "input" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "conv1" | |
type: "Convolution" | |
bottom: "input" | |
top: "conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 64 | |
pad: 3 | |
kernel_size: 7 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
engine: CUDNN | |
} | |
} | |
layer { | |
name: "ReLU1" | |
type: "ReLU" | |
bottom: "conv1" | |
top: "conv1" | |
relu_param { | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "conv2" | |
type: "Convolution" | |
bottom: "conv1" | |
top: "conv2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 2 | |
kernel_size: 5 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
engine: CUDNN | |
} | |
} | |
layer { | |
name: "ReLU2" | |
type: "ReLU" | |
bottom: "conv2" | |
top: "conv2" | |
relu_param { | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "conv3" | |
type: "Convolution" | |
bottom: "conv2" | |
top: "conv3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 2 | |
kernel_size: 5 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
engine: CUDNN | |
} | |
} | |
layer { | |
name: "ReLU3" | |
type: "ReLU" | |
bottom: "conv3" | |
top: "conv3" | |
relu_param { | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "conv3_1" | |
type: "Convolution" | |
bottom: "conv3" | |
top: "conv3_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
engine: CUDNN | |
} | |
} | |
layer { | |
name: "ReLU4" | |
type: "ReLU" | |
bottom: "conv3_1" | |
top: "conv3_1" | |
relu_param { | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "conv4" | |
type: "Convolution" | |
bottom: "conv3_1" | |
top: "conv4" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
engine: CUDNN | |
} | |
} | |
layer { | |
name: "ReLU5" | |
type: "ReLU" | |
bottom: "conv4" | |
top: "conv4" | |
relu_param { | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "conv4_1" | |
type: "Convolution" | |
bottom: "conv4" | |
top: "conv4_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
engine: CUDNN | |
} | |
} | |
layer { | |
name: "ReLU6" | |
type: "ReLU" | |
bottom: "conv4_1" | |
top: "conv4_1" | |
relu_param { | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "conv5" | |
type: "Convolution" | |
bottom: "conv4_1" | |
top: "conv5" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
engine: CUDNN | |
} | |
} | |
layer { | |
name: "ReLU7" | |
type: "ReLU" | |
bottom: "conv5" | |
top: "conv5" | |
relu_param { | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "conv5_1" | |
type: "Convolution" | |
bottom: "conv5" | |
top: "conv5_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
engine: CUDNN | |
} | |
} | |
layer { | |
name: "ReLU8" | |
type: "ReLU" | |
bottom: "conv5_1" | |
top: "conv5_1" | |
relu_param { | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "conv6" | |
type: "Convolution" | |
bottom: "conv5_1" | |
top: "conv6" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 1024 | |
pad: 1 | |
kernel_size: 3 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
engine: CUDNN | |
} | |
} | |
layer { | |
name: "ReLU9" | |
type: "ReLU" | |
bottom: "conv6" | |
top: "conv6" | |
relu_param { | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "conv6_1" | |
type: "Convolution" | |
bottom: "conv6" | |
top: "conv6_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 1024 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
engine: CUDNN | |
} | |
} | |
layer { | |
name: "ReLU10" | |
type: "ReLU" | |
bottom: "conv6_1" | |
top: "conv6_1" | |
relu_param { | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "Convolution1" | |
type: "Convolution" | |
bottom: "conv6_1" | |
top: "predict_flow6" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 2 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
engine: CUDNN | |
} | |
} | |
layer { | |
name: "Downsample1" | |
type: "Downsample" | |
bottom: "scaled_flow_gt" | |
bottom: "predict_flow6" | |
top: "blob24" | |
} | |
layer { | |
name: "flow_loss6" | |
type: "L1Loss" | |
bottom: "predict_flow6" | |
bottom: "blob24" | |
top: "flow_loss6" | |
loss_weight: 0.32 | |
l1_loss_param { | |
l2_per_location: true | |
} | |
} | |
layer { | |
name: "deconv5" | |
type: "Deconvolution" | |
bottom: "conv6_1" | |
top: "deconv5" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 4 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
engine: CUDNN | |
} | |
} | |
layer { | |
name: "ReLU11" | |
type: "ReLU" | |
bottom: "deconv5" | |
top: "deconv5" | |
relu_param { | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "upsample_flow6to5" | |
type: "Deconvolution" | |
bottom: "predict_flow6" | |
top: "upsampled_flow6_to_5" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 2 | |
pad: 1 | |
kernel_size: 4 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
engine: CUDNN | |
} | |
} | |
layer { | |
name: "Concat2" | |
type: "Concat" | |
bottom: "conv5_1" | |
bottom: "deconv5" | |
bottom: "upsampled_flow6_to_5" | |
top: "concat5" | |
} | |
layer { | |
name: "Convolution2" | |
type: "Convolution" | |
bottom: "concat5" | |
top: "predict_flow5" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 2 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
engine: CUDNN | |
} | |
} | |
layer { | |
name: "Downsample2" | |
type: "Downsample" | |
bottom: "scaled_flow_gt" | |
bottom: "predict_flow5" | |
top: "blob29" | |
} | |
layer { | |
name: "flow_loss5" | |
type: "L1Loss" | |
bottom: "predict_flow5" | |
bottom: "blob29" | |
top: "flow_loss5" | |
loss_weight: 0.08 | |
l1_loss_param { | |
l2_per_location: true | |
} | |
} | |
layer { | |
name: "deconv4" | |
type: "Deconvolution" | |
bottom: "concat5" | |
top: "deconv4" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 4 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
engine: CUDNN | |
} | |
} | |
layer { | |
name: "ReLU12" | |
type: "ReLU" | |
bottom: "deconv4" | |
top: "deconv4" | |
relu_param { | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "upsample_flow5to4" | |
type: "Deconvolution" | |
bottom: "predict_flow5" | |
top: "upsampled_flow5_to_4" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 2 | |
pad: 1 | |
kernel_size: 4 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
engine: CUDNN | |
} | |
} | |
layer { | |
name: "Concat3" | |
type: "Concat" | |
bottom: "conv4_1" | |
bottom: "deconv4" | |
bottom: "upsampled_flow5_to_4" | |
top: "concat4" | |
} | |
layer { | |
name: "Convolution3" | |
type: "Convolution" | |
bottom: "concat4" | |
top: "predict_flow4" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 2 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
engine: CUDNN | |
} | |
} | |
layer { | |
name: "Downsample3" | |
type: "Downsample" | |
bottom: "scaled_flow_gt" | |
bottom: "predict_flow4" | |
top: "blob34" | |
} | |
layer { | |
name: "flow_loss4" | |
type: "L1Loss" | |
bottom: "predict_flow4" | |
bottom: "blob34" | |
top: "flow_loss4" | |
loss_weight: 0.02 | |
l1_loss_param { | |
l2_per_location: true | |
} | |
} | |
layer { | |
name: "deconv3" | |
type: "Deconvolution" | |
bottom: "concat4" | |
top: "deconv3" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 4 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
engine: CUDNN | |
} | |
} | |
layer { | |
name: "ReLU13" | |
type: "ReLU" | |
bottom: "deconv3" | |
top: "deconv3" | |
relu_param { | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "upsample_flow4to3" | |
type: "Deconvolution" | |
bottom: "predict_flow4" | |
top: "upsampled_flow4_to_3" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 2 | |
pad: 1 | |
kernel_size: 4 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
engine: CUDNN | |
} | |
} | |
layer { | |
name: "Concat4" | |
type: "Concat" | |
bottom: "conv3_1" | |
bottom: "deconv3" | |
bottom: "upsampled_flow4_to_3" | |
top: "concat3" | |
} | |
layer { | |
name: "Convolution4" | |
type: "Convolution" | |
bottom: "concat3" | |
top: "predict_flow3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 2 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
engine: CUDNN | |
} | |
} | |
layer { | |
name: "Downsample4" | |
type: "Downsample" | |
bottom: "scaled_flow_gt" | |
bottom: "predict_flow3" | |
top: "blob39" | |
} | |
layer { | |
name: "flow_loss3" | |
type: "L1Loss" | |
bottom: "predict_flow3" | |
bottom: "blob39" | |
top: "flow_loss3" | |
loss_weight: 0.01 | |
l1_loss_param { | |
l2_per_location: true | |
} | |
} | |
layer { | |
name: "deconv2" | |
type: "Deconvolution" | |
bottom: "concat3" | |
top: "deconv2" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 64 | |
pad: 1 | |
kernel_size: 4 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
engine: CUDNN | |
} | |
} | |
layer { | |
name: "ReLU14" | |
type: "ReLU" | |
bottom: "deconv2" | |
top: "deconv2" | |
relu_param { | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "upsample_flow3to2" | |
type: "Deconvolution" | |
bottom: "predict_flow3" | |
top: "upsampled_flow3_to_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 2 | |
pad: 1 | |
kernel_size: 4 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
engine: CUDNN | |
} | |
} | |
layer { | |
name: "Concat5" | |
type: "Concat" | |
bottom: "conv2" | |
bottom: "deconv2" | |
bottom: "upsampled_flow3_to_2" | |
top: "concat2" | |
} | |
layer { | |
name: "Convolution5" | |
type: "Convolution" | |
bottom: "concat2" | |
top: "predict_flow2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 2 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
engine: CUDNN | |
} | |
} | |
layer { | |
name: "Downsample5" | |
type: "Downsample" | |
bottom: "scaled_flow_gt" | |
bottom: "predict_flow2" | |
top: "blob44" | |
} | |
layer { | |
name: "flow_loss2" | |
type: "L1Loss" | |
bottom: "predict_flow2" | |
bottom: "blob44" | |
top: "flow_loss2" | |
loss_weight: 0.005 | |
l1_loss_param { | |
l2_per_location: true | |
} | |
} | |
# layer { | |
# name: "Eltwise4" | |
# type: "Eltwise" | |
# bottom: "predict_flow2" | |
# top: "final_predict_flow" | |
# eltwise_param { | |
# operation: SUM | |
# coeff: 20.0 | |
# } | |
# } | |
# layer { | |
# name: "Out1" | |
# type: "HDF5Output" | |
# bottom: "img0_aug" | |
# bottom: "img1_aug" | |
# hdf5_output_param { | |
# file_name: "input_images.hdf5" | |
# } | |
# } | |
# layer { | |
# name: "Out2" | |
# type: "HDF5Output" | |
# bottom: "flow_gt_aug" | |
# bottom: "predict_flow2" | |
# hdf5_output_param { | |
# file_name: "input_flow.hdf5" | |
# } | |
# } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment