Created
April 17, 2017 21:48
-
-
Save tonycao/a8ff0223592edae24e26f7fe6797e447 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "FaceNet" | |
layer { | |
name: "facenet" | |
type: "Data" | |
top: "data" | |
top: "label" | |
include { | |
phase: TRAIN | |
} | |
transform_param { | |
scale: 0.00390625 | |
} | |
data_param { | |
source: "/home/xubinbin/caffe/tmp_train_lmdb/" | |
batch_size: 64 | |
backend: LMDB | |
} | |
} | |
layer { | |
name: "facenet" | |
type: "Data" | |
top: "data" | |
top: "label" | |
include { | |
phase: TEST | |
} | |
transform_param { | |
scale: 0.00390625 | |
} | |
data_param { | |
source: "/home/xubinbin/caffe/tmp_test_lmdb/" | |
batch_size: 64 | |
backend: LMDB | |
} | |
} | |
layer { | |
name: "conv1" | |
type: "Convolution" | |
bottom: "data" | |
top: "conv1" | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
} | |
convolution_param { | |
num_output: 64 | |
kernel_size: 7 | |
stride: 2 | |
pad: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "pool1" | |
type: "Pooling" | |
bottom: "conv1" | |
top: "pool1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "rnorm1" | |
type: "LRN" | |
bottom: "pool1" | |
top: "rnorm1" | |
lrn_param { | |
local_size: 5 | |
alpha: 1.0 | |
beta: 0.75 | |
} | |
} | |
layer { | |
name: "conv2a" | |
type: "Convolution" | |
bottom: "rnorm1" | |
top: "conv2a" | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
} | |
convolution_param { | |
num_output: 64 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "conv2" | |
type: "Convolution" | |
bottom: "conv2a" | |
top: "conv2" | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
} | |
convolution_param { | |
num_output: 192 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "rnorm2" | |
type: "LRN" | |
bottom: "conv2" | |
top: "rnorm2" | |
lrn_param { | |
local_size: 5 | |
alpha: 1.0 | |
beta: 0.75 | |
} | |
} | |
layer { | |
name: "pool2" | |
type: "Pooling" | |
bottom: "rnorm2" | |
top: "pool2" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
pad: 1 | |
} | |
} | |
layer { | |
name: "conv3a" | |
type: "Convolution" | |
bottom: "pool2" | |
top: "conv3a" | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
} | |
convolution_param { | |
num_output: 192 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "conv3" | |
type: "Convolution" | |
bottom: "conv3a" | |
top: "conv3" | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
} | |
convolution_param { | |
num_output: 384 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "pool3" | |
type: "Pooling" | |
bottom: "conv3" | |
top: "pool3" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
#pad: 1 | |
} | |
} | |
layer { | |
name: "conv4a" | |
type: "Convolution" | |
bottom: "pool3" | |
top: "conv4a" | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
} | |
convolution_param { | |
num_output: 384 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "conv4" | |
type: "Convolution" | |
bottom: "conv4a" | |
top: "conv4" | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "conv5a" | |
type: "Convolution" | |
bottom: "conv4" | |
top: "conv5a" | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "conv5" | |
type: "Convolution" | |
bottom: "conv5a" | |
top: "conv5" | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "conv6a" | |
type: "Convolution" | |
bottom: "conv5" | |
top: "conv6a" | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "conv6" | |
type: "Convolution" | |
bottom: "conv6a" | |
top: "conv6" | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "pool4" | |
type: "Pooling" | |
bottom: "conv6" | |
top: "pool4" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
#pad: 1 | |
} | |
} | |
layer { | |
name: "fc1a" | |
type: "InnerProduct" | |
bottom: "pool4" | |
top: "fc1a" | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
} | |
inner_product_param { | |
num_output: 4096 | |
weight_filler { | |
type: "gaussian" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "fc1b" | |
type: "InnerProduct" | |
bottom: "pool4" | |
top: "fc1b" | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
} | |
inner_product_param { | |
num_output: 4096 | |
weight_filler { | |
type: "gaussian" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "maxout1" | |
type: "Eltwise" | |
bottom: "fc1a" | |
bottom: "fc1b" | |
top: "maxout1" | |
eltwise_param { | |
operation:MAX | |
} | |
} | |
layer { | |
name: "fc2a" | |
type: "InnerProduct" | |
bottom: "maxout1" | |
top: "fc2a" | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
} | |
inner_product_param { | |
num_output: 4096 | |
weight_filler { | |
type: "gaussian" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "fc2b" | |
type: "InnerProduct" | |
bottom: "maxout1" | |
top: "fc2b" | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
} | |
inner_product_param { | |
num_output: 4096 | |
weight_filler { | |
type: "gaussian" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "maxout2" | |
type: "Eltwise" | |
bottom: "fc2a" | |
bottom: "fc2b" | |
top: "maxout2" | |
eltwise_param { | |
operation:MAX | |
} | |
} | |
layer { | |
name: "fc7128" | |
type: "InnerProduct" | |
bottom: "maxout2" | |
top: "fc7128" | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
} | |
inner_product_param { | |
num_output: 128 | |
weight_filler { | |
type: "gaussian" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "l2" | |
type: "Normalization" | |
bottom: "fc7128" | |
top: "l2" | |
normalization_param { | |
norm: L2 | |
} | |
} | |
layer { | |
name: "loss" | |
type: "TripletLoss" | |
bottom: "l2" | |
# bottom: "fc7128" | |
bottom: "label" | |
top: "loss" | |
triplet_loss_param { | |
alpha: 0.8 | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment