Skip to content

Instantly share code, notes, and snippets.

@tonycao
Created April 11, 2017 18:28
Show Gist options
  • Save tonycao/ae809ec7556b21a48336c8b55dec91e3 to your computer and use it in GitHub Desktop.
Save tonycao/ae809ec7556b21a48336c8b55dec91e3 to your computer and use it in GitHub Desktop.
name: "ZF_triplet_test"
input: "data"
input_shape {
dim: 1
dim: 3
dim: 224
dim: 224
}
input: "im_info"
input_shape {
dim: 1
dim: 3
}
#========= conv1-conv5 ============
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
convolution_param {
num_output: 96
kernel_size: 7
pad: 3
stride: 2
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "norm1"
type: "LRN"
bottom: "conv1"
top: "norm1"
lrn_param {
local_size: 3
alpha: 0.00005
beta: 0.75
norm_region: WITHIN_CHANNEL
engine: CAFFE
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "norm1"
top: "pool1"
pooling_param {
kernel_size: 3
stride: 2
pad: 1
pool: MAX
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
convolution_param {
num_output: 256
kernel_size: 5
pad: 2
stride: 2
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "norm2"
type: "LRN"
bottom: "conv2"
top: "norm2"
lrn_param {
local_size: 3
alpha: 0.00005
beta: 0.75
norm_region: WITHIN_CHANNEL
engine: CAFFE
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "norm2"
top: "pool2"
pooling_param {
kernel_size: 3
stride: 2
pad: 1
pool: MAX
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
convolution_param {
num_output: 384
kernel_size: 3
pad: 1
stride: 1
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
convolution_param {
num_output: 384
kernel_size: 3
pad: 1
stride: 1
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
#========= RPN ============
layer {
name: "rpn_conv/3x3"
type: "Convolution"
bottom: "conv5"
top: "rpn/output"
convolution_param {
num_output: 256
kernel_size: 3 pad: 1 stride: 1
weight_filler { type: "gaussian" std: 0.01 }
bias_filler { type: "constant" value: 0 }
}
}
layer {
name: "rpn_relu/3x3"
type: "ReLU"
bottom: "rpn/output"
top: "rpn/output"
}
#layer {
# name: "rpn_conv/3x3"
# type: "Convolution"
# bottom: "conv5"
# top: "rpn_conv/3x3"
# param { lr_mult: 1.0 decay_mult: 1.0 }
# param { lr_mult: 2.0 decay_mult: 0 }
# convolution_param {
# num_output: 192
# kernel_size: 3 pad: 1 stride: 1
# weight_filler { type: "gaussian" std: 0.01 }
# bias_filler { type: "constant" value: 0 }
# }
#}
#layer {
# name: "rpn_conv/5x5"
# type: "Convolution"
# bottom: "conv5"
# top: "rpn_conv/5x5"
# param { lr_mult: 1.0 decay_mult: 1.0 }
# param { lr_mult: 2.0 decay_mult: 0 }
# convolution_param {
# num_output: 64
# kernel_size: 5 pad: 2 stride: 1
# weight_filler { type: "gaussian" std: 0.0036 }
# bias_filler { type: "constant" value: 0 }
# }
#}
#layer {
# name: "rpn/output"
# type: "Concat"
# bottom: "rpn_conv/3x3"
# bottom: "rpn_conv/5x5"
# top: "rpn/output"
#}
#layer {
# name: "rpn_relu/output"
# type: "ReLU"
# bottom: "rpn/output"
# top: "rpn/output"
#}
layer {
name: "rpn_cls_score"
type: "Convolution"
bottom: "rpn/output"
top: "rpn_cls_score"
convolution_param {
num_output: 18 # 2(bg/fg) * 9(anchors)
kernel_size: 1 pad: 0 stride: 1
weight_filler { type: "gaussian" std: 0.01 }
bias_filler { type: "constant" value: 0 }
}
}
layer {
name: "rpn_bbox_pred"
type: "Convolution"
bottom: "rpn/output"
top: "rpn_bbox_pred"
convolution_param {
num_output: 36 # 4 * 9(anchors)
kernel_size: 1 pad: 0 stride: 1
weight_filler { type: "gaussian" std: 0.01 }
bias_filler { type: "constant" value: 0 }
}
}
layer {
bottom: "rpn_cls_score"
top: "rpn_cls_score_reshape"
name: "rpn_cls_score_reshape"
type: "Reshape"
reshape_param { shape { dim: 0 dim: 2 dim: -1 dim: 0 } }
}
#========= RoI Proposal ============
layer {
name: "rpn_cls_prob"
type: "Softmax"
bottom: "rpn_cls_score_reshape"
top: "rpn_cls_prob"
}
layer {
name: 'rpn_cls_prob_reshape'
type: 'Reshape'
bottom: 'rpn_cls_prob'
top: 'rpn_cls_prob_reshape'
reshape_param { shape { dim: 0 dim: 18 dim: -1 dim: 0 } }
}
layer {
name: 'proposal'
type: 'Python'
bottom: 'rpn_cls_prob_reshape'
bottom: 'rpn_bbox_pred'
bottom: 'im_info'
top: 'rois'
python_param {
module: 'rpn.proposal_layer'
layer: 'ProposalLayer'
param_str: "'feat_stride': 16"
}
}
#========= RCNN ============
layer {
name: "roi_pool_conv5"
type: "ROIPooling"
bottom: "conv5"
bottom: "rois"
top: "roi_pool_conv5"
roi_pooling_param {
pooled_w: 6
pooled_h: 6
spatial_scale: 0.0625 # 1/16
}
}
layer {
name: "fc6"
type: "InnerProduct"
bottom: "roi_pool_conv5"
top: "fc6"
inner_product_param {
num_output: 4096
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
scale_train: false
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
inner_product_param {
num_output: 4096
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
scale_train: false
}
}
layer {
name: "cls_score"
type: "InnerProduct"
bottom: "fc7"
top: "cls_score"
inner_product_param {
num_output: 2
}
}
layer {
name: "bbox_pred"
type: "InnerProduct"
bottom: "fc7"
top: "bbox_pred"
inner_product_param {
num_output: 8
}
}
layer {
name: "cls_prob"
type: "Softmax"
bottom: "cls_score"
top: "cls_prob"
loss_param {
ignore_label: -1
normalize: true
}
}
#====================tripletloss==================
layer {
name: "fc9_1"
type: "InnerProduct"
bottom: "fc7"
top: "fc9_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 0
decay_mult: 0
}
inner_product_param {
num_output: 512
weight_filler {
type: "xavier"
}
bias_filler{
type: "constant"
value: 0
}
}
}
layer {
name: "l2norm"
type: "Python"
bottom: "fc9_1"
top: "l2norm"
python_param {
module: "triplet.l2norm_layer"
layer: "L2NormLayer"
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment