Created
July 8, 2020 19:11
-
-
Save trinker/8871d10fc14427d7d80e19b38454d351 to your computer and use it in GitHub Desktop.
Wordcloud with quanteda
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
## Load dependencies | |
library(quanteda) | |
library(sentimentr) | |
library(tidyverse) | |
library(lexicon) | |
## Data set from sentimentr package | |
dat <- presidential_debates_2012 | |
dat | |
corp <- corpus(dat, text_field = "dialogue") | |
stopwords <- c(sw_fry_100, function_words, c('obama', 'because', 'romney', 'going', 'our', 'president')) | |
# basic wordcloud for Romey | |
dfmat1 <- dfm( | |
corpus_subset(corp, person == "ROMNEY"), ## get subsets of the original data for Romney | |
remove = stopwords, ## remove overly common words | |
remove_numbers = TRUE, | |
remove_punct = TRUE, | |
remove_url = TRUE, | |
remove_symbols = TRUE, | |
stem = FALSE | |
) %>% | |
dfm_trim(min_termfreq = 8) #how frequently a temr must show up | |
par(xpd=F) | |
textplot_wordcloud(dfmat1, color = rev(RColorBrewer::brewer.pal(10, "RdBu"))) | |
title("Romeny", adj=1, line=1, font=2, col.main = 'orange') | |
# basic wordcloud for Obama | |
dfmat2 <- dfm( | |
corpus_subset(corp, person == "OBAMA"), ## get subsets of the original data for Romney | |
remove = stopwords, ## remove overly common words | |
remove_numbers = TRUE, | |
remove_punct = TRUE, | |
remove_url = TRUE, | |
remove_symbols = TRUE, | |
stem = FALSE | |
) %>% | |
dfm_trim(min_termfreq = 8) #how frequently a temr must show up | |
dev.new() | |
par(xpd=F) | |
textplot_wordcloud(dfmat2, color = rev(RColorBrewer::brewer.pal(10, "RdBu"))) | |
title("Obama", adj=1, line=1, font=2, col.main = 'orange') | |
## Now a little more complicated. | |
## Loop through each person and time and plot out the words. | |
## Stem along the way | |
subset_dat <- dat %>% | |
filter(person %in% c('ROMNEY', 'OBAMA')) | |
subs <- subset_dat %>% | |
select(person, time) %>% | |
distinct() %>% | |
mutate( | |
title = paste(time, person, sep = ': '), | |
across(everything(), as.character) | |
) | |
corp2 <- corpus(subset_dat, text_field = "dialogue") | |
for (i in seq_len(nrow(subs))) { | |
# basic wordcloud for Obama | |
dfmat <- dfm( | |
corpus_subset(corp2, person == subs[['person']][i] & time == subs[['time']][i]), ## get subsets of the original data for Romney | |
remove = stopwords, ## remove overly common words | |
remove_numbers = TRUE, | |
remove_punct = TRUE, | |
remove_url = TRUE, | |
remove_symbols = TRUE, | |
stem = TRUE | |
) %>% | |
dfm_trim(min_termfreq = 5) #how frequently a term must show up | |
dev.new() | |
par(xpd=F) | |
textplot_wordcloud(dfmat, color = rev(RColorBrewer::brewer.pal(10, "RdBu"))) | |
title(subs[['title']][i], adj=1, line=1, font=2, col.main = 'orange') | |
} |
Author
trinker
commented
Jul 8, 2020
Basic workflow:
- Read in data
- Create a corpus
- Decide on stopwords to remove
- Create a matrix of terms and documents (quanteda is useful)
- Decide if you want to stem
- remove punctuation
- remove stopwords
- remove numbers
- remove stuff with low information gain
- Plot all or subsets of the data in word cloud form (there are other ways to look at themes but this is a decent start)
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment