-
-
Save trungnt13/3f70024c05f8038d871104de542019d8 to your computer and use it in GitHub Desktop.
Loss function of MiDaS
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
def compute_scale_and_shift(prediction, target, mask): | |
# system matrix: A = [[a_00, a_01], [a_10, a_11]] | |
a_00 = torch.sum(mask * prediction * prediction, (1, 2)) | |
a_01 = torch.sum(mask * prediction, (1, 2)) | |
a_11 = torch.sum(mask, (1, 2)) | |
# right hand side: b = [b_0, b_1] | |
b_0 = torch.sum(mask * prediction * target, (1, 2)) | |
b_1 = torch.sum(mask * target, (1, 2)) | |
# solution: x = A^-1 . b = [[a_11, -a_01], [-a_10, a_00]] / (a_00 * a_11 - a_01 * a_10) . b | |
x_0 = torch.zeros_like(b_0) | |
x_1 = torch.zeros_like(b_1) | |
det = a_00 * a_11 - a_01 * a_01 | |
valid = det.nonzero() | |
x_0[valid] = (a_11[valid] * b_0[valid] - a_01[valid] * b_1[valid]) / det[valid] | |
x_1[valid] = (-a_01[valid] * b_0[valid] + a_00[valid] * b_1[valid]) / det[valid] | |
return x_0, x_1 | |
def reduction_batch_based(image_loss, M): | |
# average of all valid pixels of the batch | |
# avoid division by 0 (if sum(M) = sum(sum(mask)) = 0: sum(image_loss) = 0) | |
divisor = torch.sum(M) | |
if divisor == 0: | |
return 0 | |
else: | |
return torch.sum(image_loss) / divisor | |
def reduction_image_based(image_loss, M): | |
# mean of average of valid pixels of an image | |
# avoid division by 0 (if M = sum(mask) = 0: image_loss = 0) | |
valid = M.nonzero() | |
image_loss[valid] = image_loss[valid] / M[valid] | |
return torch.mean(image_loss) | |
def mse_loss(prediction, target, mask, reduction=reduction_batch_based): | |
M = torch.sum(mask, (1, 2)) | |
res = prediction - target | |
image_loss = torch.sum(mask * res * res, (1, 2)) | |
return reduction(image_loss, 2 * M) | |
def gradient_loss(prediction, target, mask, reduction=reduction_batch_based): | |
M = torch.sum(mask, (1, 2)) | |
diff = prediction - target | |
diff = torch.mul(mask, diff) | |
grad_x = torch.abs(diff[:, :, 1:] - diff[:, :, :-1]) | |
mask_x = torch.mul(mask[:, :, 1:], mask[:, :, :-1]) | |
grad_x = torch.mul(mask_x, grad_x) | |
grad_y = torch.abs(diff[:, 1:, :] - diff[:, :-1, :]) | |
mask_y = torch.mul(mask[:, 1:, :], mask[:, :-1, :]) | |
grad_y = torch.mul(mask_y, grad_y) | |
image_loss = torch.sum(grad_x, (1, 2)) + torch.sum(grad_y, (1, 2)) | |
return reduction(image_loss, M) | |
class MSELoss(nn.Module): | |
def __init__(self, reduction='batch-based'): | |
super().__init__() | |
if reduction == 'batch-based': | |
self.__reduction = reduction_batch_based | |
else: | |
self.__reduction = reduction_image_based | |
def forward(self, prediction, target, mask): | |
return mse_loss(prediction, target, mask, reduction=self.__reduction) | |
class GradientLoss(nn.Module): | |
def __init__(self, scales=4, reduction='batch-based'): | |
super().__init__() | |
if reduction == 'batch-based': | |
self.__reduction = reduction_batch_based | |
else: | |
self.__reduction = reduction_image_based | |
self.__scales = scales | |
def forward(self, prediction, target, mask): | |
total = 0 | |
for scale in range(self.__scales): | |
step = pow(2, scale) | |
total += gradient_loss(prediction[:, ::step, ::step], target[:, ::step, ::step], | |
mask[:, ::step, ::step], reduction=self.__reduction) | |
return total | |
class ScaleAndShiftInvariantLoss(nn.Module): | |
def __init__(self, alpha=0.5, scales=4, reduction='batch-based'): | |
super().__init__() | |
self.__data_loss = MSELoss(reduction=reduction) | |
self.__regularization_loss = GradientLoss(scales=scales, reduction=reduction) | |
self.__alpha = alpha | |
self.__prediction_ssi = None | |
def forward(self, prediction, target, mask): | |
scale, shift = compute_scale_and_shift(prediction, target, mask) | |
self.__prediction_ssi = scale.view(-1, 1, 1) * prediction + shift.view(-1, 1, 1) | |
total = self.__data_loss(self.__prediction_ssi, target, mask) | |
if self.__alpha > 0: | |
total += self.__alpha * self.__regularization_loss(self.__prediction_ssi, target, mask) | |
return total | |
def __get_prediction_ssi(self): | |
return self.__prediction_ssi | |
prediction_ssi = property(__get_prediction_ssi) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment