Last active
March 13, 2022 17:06
-
-
Save ttamg/a1f3c347b829ef9715e65c24d49eb26c to your computer and use it in GitHub Desktop.
A simple Tensorflow 2 MNIST training example to confirm installation is working
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# tensorflow_mnist.py | |
# A simple Tensorflow 2 MNIST training script to test installation is working correctly. | |
import tensorflow as tf | |
import tensorflow_datasets as tfds | |
(ds_train, ds_test), ds_info = tfds.load( | |
'mnist', | |
split=['train', 'test'], | |
shuffle_files=True, | |
as_supervised=True, | |
with_info=True, | |
) | |
def normalize_img(image, label): | |
"""Normalizes images: `uint8` -> `float32`.""" | |
return tf.cast(image, tf.float32) / 255., label | |
ds_train = ds_train.map( | |
normalize_img, num_parallel_calls=tf.data.AUTOTUNE) | |
ds_train = ds_train.cache() | |
ds_train = ds_train.shuffle(ds_info.splits['train'].num_examples) | |
ds_train = ds_train.batch(128) | |
ds_train = ds_train.prefetch(tf.data.AUTOTUNE) | |
ds_test = ds_test.map( | |
normalize_img, num_parallel_calls=tf.data.AUTOTUNE) | |
ds_test = ds_test.batch(128) | |
ds_test = ds_test.cache() | |
ds_test = ds_test.prefetch(tf.data.AUTOTUNE) | |
model = tf.keras.models.Sequential([ | |
tf.keras.layers.Flatten(input_shape=(28, 28)), | |
tf.keras.layers.Dense(128, activation='relu'), | |
tf.keras.layers.Dense(10) | |
]) | |
model.compile( | |
optimizer=tf.keras.optimizers.Adam(0.001), | |
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), | |
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()], | |
) | |
model.fit( | |
ds_train, | |
epochs=6, | |
validation_data=ds_test, | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment