Skip to content

Instantly share code, notes, and snippets.

@tuler
Created January 8, 2025 22:07
Show Gist options
  • Save tuler/02aa42c423e5a627a0ea5fa5b9381f7b to your computer and use it in GitHub Desktop.
Save tuler/02aa42c423e5a627a0ea5fa5b9381f7b to your computer and use it in GitHub Desktop.
community notes execution log
This file has been truncated, but you can view the full file.
$ python3 main.py -e ../input/userEnrollment-00000.tsv -n ../input/notes-00000.tsv -r ../input/ratings -s ../input/noteStatusHistory-00000.tsv -o ../output --seed 0 --parallel
INFO:birdwatch.runner:scorer python version: 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0]
INFO:birdwatch.runner:scorer pandas version: 2.2.2
INFO:birdwatch.runner:beginning scorer execution
INFO:birdwatch.process_data:Timestamp of latest rating in data: 2025-01-04 01:01:21.258000
INFO:birdwatch.process_data:Timestamp of latest note in data: 2025-01-04 01:01:14.426000
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_status_history.py, in merge_note_info, at line 31: newNoteStatusHistory = oldNoteStatusHistory.merge(
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_status_history.py, in merge_note_info, at line 31: newNoteStatusHistory = oldNoteStatusHistory.merge(
PandasTypeError: Output mismatch on createdAtMillis: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on createdAtMillis_notes: result=float64 expected=int64 (allowed)
INFO:birdwatch.note_status_history:total notes added to noteStatusHistory: 58610
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_status_history.py, in merge_note_info, at line 57: newNoteStatusHistory[[c.noteIdKey, c.createdAtMillisKey]].merge(
PandasTypeError: Input mismatch on createdAtMillis: left=float64 vs right=int64 (allowed)
PandasTypeError: Merge key mismatch on createdAtMillis: left=float64 vs right=int64 (allowed)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/process_data.py, in _filter_misleading_notes, at line 270: ratings = ratings.merge(
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.process_data:Preprocess Data: Filter misleading notes, starting with 118977893 ratings on 1566003 notes
INFO:birdwatch.process_data: Keeping 85792913 ratings on 1051136 misleading notes
INFO:birdwatch.process_data: Keeping 8763256 ratings on 149656 deleted notes that were previously scored (in note status history)
INFO:birdwatch.process_data: Removing 58796 ratings on 2914 older notes that aren't deleted, but are not-misleading.
INFO:birdwatch.process_data: Removing 9540 ratings on 1128 notes that were deleted and not in note status history (e.g. old).
INFO:birdwatch.process_data:Num Ratings: 118909557, Num Unique Notes Rated: 1561961, Num Unique Raters: 1040729
INFO:birdwatch.process_data:Called filter_input_data_for_testing.
Notes: 1554031, Ratings: 118909557. Max note createdAt: 2025-01-04 01:01:14.426000; Max rating createAt: 2025-01-04 01:01:21.258000
INFO:birdwatch.process_data:After filtering notes and ratings after particular timestamp (=None).
Notes: 1554031, Ratings: 118909557. Max note createdAt: 2025-01-04 01:01:14.426000; Max rating createAt: 2025-01-04 01:01:21.258000
INFO:birdwatch.process_data:After filtering ratings after first status (plus None hours) for notes created in last 14 days.
Notes: 1554031, Ratings: 118909557. Max note createdAt: 2025-01-04 01:01:14.426000; Max rating createAt: 2025-01-04 01:01:21.258000
INFO:birdwatch.process_data:After filtering prescoring notes and ratings to simulate a delay of None hours:
Notes: 1554031, Ratings: 118909557. Max note createdAt: 2025-01-04 01:01:14.426000; Max rating createAt: 2025-01-04 01:01:21.258000
INFO:birdwatch.constants:Compute pair counts dict elapsed time: 10826.08 secs (180.43 mins)
INFO:birdwatch.constants:Compute PMI and minSim elapsed time: 2308.48 secs (38.47 mins)
INFO:birdwatch.constants:Delete unneeded pairs from pairCountsDict elapsed time: 273.86 secs (4.56 mins)
INFO:birdwatch.constants:Aggregate into cliques by post selection similarity elapsed time: 13.96 secs (0.23 mins)
INFO:birdwatch.constants:Compute Post Selection Similarity elapsed time: 13622.11 secs (227.04 mins)
INFO:birdwatch.run_scoring:logging environment variables
INFO:birdwatch.run_scoring:notes total RAM: 122768821 bytes (0.123 GB)
column dtype RAM
0 noteId int64 12432248
1 noteAuthorParticipantId object 12432248
2 createdAtMillis int64 12432248
3 tweetId object 12432248
4 classification object 12432248
5 believable category 1554155
6 harmful category 1554155
7 validationDifficulty category 1554155
8 misleadingOther Int8 3108062
9 misleadingFactualError Int8 3108062
10 misleadingManipulatedMedia Int8 3108062
11 misleadingOutdatedInformation Int8 3108062
12 misleadingMissingImportantContext Int8 3108062
13 misleadingUnverifiedClaimAsFact Int8 3108062
14 misleadingSatire Int8 3108062
15 notMisleadingOther Int8 3108062
16 notMisleadingFactuallyCorrect Int8 3108062
17 notMisleadingOutdatedButNotWhenWritten Int8 3108062
18 notMisleadingClearlySatire Int8 3108062
19 notMisleadingPersonalOpinion Int8 3108062
20 trustworthySources Int8 3108062
21 summary object 12432248
22 isMediaNote Int8 3108062
INFO:birdwatch.run_scoring:ratings total RAM: 11296408047 bytes (11.296 GB)
column dtype RAM
0 noteId int64 951276456
1 raterParticipantId object 951276456
2 createdAtMillis int64 951276456
3 version Int8 237819114
4 agree Int8 237819114
5 disagree Int8 237819114
6 helpful Int8 237819114
7 notHelpful Int8 237819114
8 helpfulnessLevel category 118909689
9 helpfulOther Int8 237819114
10 helpfulInformative Int8 237819114
11 helpfulClear Int8 237819114
12 helpfulEmpathetic Int8 237819114
13 helpfulGoodSources Int8 237819114
14 helpfulUniqueContext Int8 237819114
15 helpfulAddressesClaim Int8 237819114
16 helpfulImportantContext Int8 237819114
17 helpfulUnbiasedLanguage Int8 237819114
18 notHelpfulOther Int8 237819114
19 notHelpfulIncorrect Int8 237819114
20 notHelpfulSourcesMissingOrUnreliable Int8 237819114
21 notHelpfulOpinionSpeculationOrBias Int8 237819114
22 notHelpfulMissingKeyPoints Int8 237819114
23 notHelpfulOutdated Int8 237819114
24 notHelpfulHardToUnderstand Int8 237819114
25 notHelpfulArgumentativeOrBiased Int8 237819114
26 notHelpfulOffTopic Int8 237819114
27 notHelpfulSpamHarassmentOrAbuse Int8 237819114
28 notHelpfulIrrelevantSources Int8 237819114
29 notHelpfulOpinionSpeculation Int8 237819114
30 notHelpfulNoteNotNeeded Int8 237819114
31 ratedOnTweetId int64 951276456
32 helpfulNum float64 951276456
INFO:birdwatch.run_scoring:noteStatusHistory total RAM: 225817062 bytes (0.226 GB)
column dtype RAM
0 noteId int64 14004048
1 noteAuthorParticipantId object 14004048
2 createdAtMillis float64 14004048
3 timestampMillisOfFirstNonNMRStatus float64 14004048
4 firstNonNMRStatus category 1750630
5 timestampMillisOfCurrentStatus float64 14004048
6 currentStatus category 1750638
7 timestampMillisOfLatestNonNMRStatus float64 14004048
8 mostRecentNonNMRStatus category 1750630
9 timestampMillisOfStatusLock float64 14004048
10 lockedStatus category 1750638
11 timestampMillisOfRetroLock float64 14004048
12 currentCoreStatus category 1750638
13 currentExpansionStatus category 1750638
14 currentGroupStatus category 1750638
15 currentDecidedBy category 1751254
16 currentModelingGroup float64 14004048
17 timestampMillisOfMostRecentStatusChange float64 14004048
18 timestampMillisOfNmrDueToMinStableCrhTime float64 14004048
19 currentMultiGroupStatus category 1750638
20 currentModelingMultiGroup float64 14004048
21 timestampMinuteOfFinalScoringOutput float64 14004048
22 timestampMillisOfFirstNmrDueToMinStableCrhTime float64 14004048
23 classification object 14004048
INFO:birdwatch.run_scoring:userEnrollment total RAM: 59362560 bytes (0.059 GB)
column dtype RAM
0 participantId object 8331584
1 enrollmentState object 8331584
2 successfulRatingNeededToEarnIn int64 8331584
3 timestampOfLastStateChange int64 8331584
4 timestampOfLastEarnOut float64 8331584
5 modelingPopulation category 1041472
6 modelingGroup float64 8331584
7 numberOfTimesEarnedOut int64 8331584
INFO:birdwatch.constants:Logging Prescoring Inputs Initial RAM usage elapsed time: 0.04 secs (0.00 mins)
INFO:birdwatch.constants:Get Note Topics: Prepare Post Text elapsed time: 16.54 secs (0.28 mins)
INFO:birdwatch.topic_model: Notes unassigned due to multiple matches: 1736
INFO:birdwatch.constants:Get Note Topics: Make Seed Labels elapsed time: 83.04 secs (1.38 mins)
INFO:birdwatch.topic_model: Initial vocabulary length: 2175468
INFO:birdwatch.topic_model: Total tokens to filter: 13
INFO:birdwatch.topic_model: Total identified stopwords: 1704
INFO:birdwatch.constants:Get Note Topics: Get Stop Words elapsed time: 86.10 secs (1.43 mins)
INFO:birdwatch.constants:Get Note Topics: Train Model elapsed time: 349.64 secs (5.83 mins)
INFO:birdwatch.topic_model:Assigning notes to topics:
INFO:birdwatch.constants:Get Note Topics: Predict elapsed time: 80.17 secs (1.34 mins)
INFO:birdwatch.topic_model: Balanced accuracy on raw predictions: 0.7090347219209823
INFO:birdwatch.topic_model: Post Topic assignment results: [888954 26545 54077 2347]
INFO:birdwatch.topic_model: Note Topic assignment results:
noteTopic
GazaConflict 112059
UkraineConflict 45446
MessiRonaldo 4027
Name: count, dtype: int64
INFO:birdwatch.constants:Get Note Topics: Merge and assign predictions elapsed time: 1.66 secs (0.03 mins)
INFO:birdwatch.constants:Note Topic Assignment elapsed time: 633.41 secs (10.56 mins)
INFO:birdwatch.run_scoring:ratings summary before PSS: fac11c8135957e8df3a12e4196a84e59731b1af5052dd2720aadf606a52da80d
INFO:birdwatch.run_scoring:Post Selection Similarity Prescoring: begin with 118909557 ratings.
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/post_selection_similarity.py, in filter_ratings_by_post_selection_similarity, at line 85: ratings.merge(
PandasTypeError: Output mismatch on postSelectionValue: result=float64 expected=int64 (allowed)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/post_selection_similarity.py, in filter_ratings_by_post_selection_similarity, at line 85: ratings.merge(
PandasTypeError: Input mismatch on postSelectionValue: left=float64 vs right=int64 (allowed)
PandasTypeError: Output mismatch on postSelectionValue_note_author: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/post_selection_similarity.py:111: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratingsWithPostSelectionSimilarityValue.sort_values(
/home/ubuntu/communitynotes/sourcecode/scoring/post_selection_similarity.py:114: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratingsWithPostSelectionSimilarityValue.drop_duplicates(
INFO:birdwatch.run_scoring:Post Selection Similarity Prescoring: 118317340 ratings remaining.
INFO:birdwatch.constants:Filter ratings by Post Selection Similarity elapsed time: 265.63 secs (4.43 mins)
INFO:birdwatch.run_scoring:ratings summary after PSS: c2198f60420b6359f2488810e7f6425a3f37c27712ac4c0b8d5b149dfbe06904
INFO:birdwatch.run_scoring:Error converting user IDs to ints. IDs will remain as strings. ValueError("invalid literal for int() with base 10: 'F35972BBD2F99515FD974E9C7AFD899970F2E4A59115132FAD59EBCB74C0ABE6'")
INFO:birdwatch.run_scoring:notes total RAM: 122768821 bytes (0.123 GB)
column dtype RAM
0 noteId int64 12432248
1 noteAuthorParticipantId object 12432248
2 createdAtMillis int64 12432248
3 tweetId object 12432248
4 classification object 12432248
5 believable category 1554155
6 harmful category 1554155
7 validationDifficulty category 1554155
8 misleadingOther Int8 3108062
9 misleadingFactualError Int8 3108062
10 misleadingManipulatedMedia Int8 3108062
11 misleadingOutdatedInformation Int8 3108062
12 misleadingMissingImportantContext Int8 3108062
13 misleadingUnverifiedClaimAsFact Int8 3108062
14 misleadingSatire Int8 3108062
15 notMisleadingOther Int8 3108062
16 notMisleadingFactuallyCorrect Int8 3108062
17 notMisleadingOutdatedButNotWhenWritten Int8 3108062
18 notMisleadingClearlySatire Int8 3108062
19 notMisleadingPersonalOpinion Int8 3108062
20 trustworthySources Int8 3108062
21 summary object 12432248
22 isMediaNote Int8 3108062
INFO:birdwatch.run_scoring:ratings total RAM: 13133224872 bytes (13.133 GB)
column dtype RAM
0 noteId int64 946538720
1 raterParticipantId object 946538720
2 createdAtMillis int64 946538720
3 version Int8 236634680
4 agree Int8 236634680
5 disagree Int8 236634680
6 helpful Int8 236634680
7 notHelpful Int8 236634680
8 helpfulnessLevel category 118317472
9 helpfulOther Int8 236634680
10 helpfulInformative Int8 236634680
11 helpfulClear Int8 236634680
12 helpfulEmpathetic Int8 236634680
13 helpfulGoodSources Int8 236634680
14 helpfulUniqueContext Int8 236634680
15 helpfulAddressesClaim Int8 236634680
16 helpfulImportantContext Int8 236634680
17 helpfulUnbiasedLanguage Int8 236634680
18 notHelpfulOther Int8 236634680
19 notHelpfulIncorrect Int8 236634680
20 notHelpfulSourcesMissingOrUnreliable Int8 236634680
21 notHelpfulOpinionSpeculationOrBias Int8 236634680
22 notHelpfulMissingKeyPoints Int8 236634680
23 notHelpfulOutdated Int8 236634680
24 notHelpfulHardToUnderstand Int8 236634680
25 notHelpfulArgumentativeOrBiased Int8 236634680
26 notHelpfulOffTopic Int8 236634680
27 notHelpfulSpamHarassmentOrAbuse Int8 236634680
28 notHelpfulIrrelevantSources Int8 236634680
29 notHelpfulOpinionSpeculation Int8 236634680
30 notHelpfulNoteNotNeeded Int8 236634680
31 ratedOnTweetId int64 946538720
32 helpfulNum float64 946538720
33 postSelectionValue float64 946538720
34 postSelectionValue_note_author float64 946538720
INFO:birdwatch.run_scoring:noteStatusHistory total RAM: 225817062 bytes (0.226 GB)
column dtype RAM
0 noteId int64 14004048
1 noteAuthorParticipantId object 14004048
2 createdAtMillis float64 14004048
3 timestampMillisOfFirstNonNMRStatus float64 14004048
4 firstNonNMRStatus category 1750630
5 timestampMillisOfCurrentStatus float64 14004048
6 currentStatus category 1750638
7 timestampMillisOfLatestNonNMRStatus float64 14004048
8 mostRecentNonNMRStatus category 1750630
9 timestampMillisOfStatusLock float64 14004048
10 lockedStatus category 1750638
11 timestampMillisOfRetroLock float64 14004048
12 currentCoreStatus category 1750638
13 currentExpansionStatus category 1750638
14 currentGroupStatus category 1750638
15 currentDecidedBy category 1751254
16 currentModelingGroup float64 14004048
17 timestampMillisOfMostRecentStatusChange float64 14004048
18 timestampMillisOfNmrDueToMinStableCrhTime float64 14004048
19 currentMultiGroupStatus category 1750638
20 currentModelingMultiGroup float64 14004048
21 timestampMinuteOfFinalScoringOutput float64 14004048
22 timestampMillisOfFirstNmrDueToMinStableCrhTime float64 14004048
23 classification object 14004048
INFO:birdwatch.run_scoring:userEnrollment total RAM: 59362560 bytes (0.059 GB)
column dtype RAM
0 participantId object 8331584
1 enrollmentState object 8331584
2 successfulRatingNeededToEarnIn int64 8331584
3 timestampOfLastStateChange int64 8331584
4 timestampOfLastEarnOut float64 8331584
5 modelingPopulation category 1041472
6 modelingGroup float64 8331584
7 numberOfTimesEarnedOut int64 8331584
INFO:birdwatch.constants:Logging Prescoring Inputs RAM usage before _run_scorers elapsed time: 0.04 secs (0.00 mins)
INFO:birdwatch.run_scoring:Starting parallel scorer execution with 23 scorers.
Patching pandas
Pairs dict used 42.949673056GB RAM at max
Pairs dict used 42.949673056GB RAM after deleted unneeded pairs
SHELL: /bin/bash
PWD: /home/ubuntu/communitynotes/sourcecode
LOGNAME: ubuntu
XDG_SESSION_TYPE: tty
MOTD_SHOWN: pam
HOME: /home/ubuntu
LANG: C.UTF-8
LS_COLORS: rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=00:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.zst=01;31:*.tzst=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.wim=01;31:*.swm=01;31:*.dwm=01;31:*.esd=01;31:*.jpg=01;35:*.jpeg=01;35:*.mjpg=01;35:*.mjpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.webp=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=00;36:*.au=00;36:*.flac=00;36:*.m4a=00;36:*.mid=00;36:*.midi=00;36:*.mka=00;36:*.mp3=00;36:*.mpc=00;36:*.ogg=00;36:*.ra=00;36:*.wav=00;36:*.oga=00;36:*.opus=00;36:*.spx=00;36:*.xspf=00;36:
VIRTUAL_ENV: /home/ubuntu/.env
SSH_CONNECTION: 71.168.238.143 59937 172.31.16.171 22
LESSCLOSE: /usr/bin/lesspipe %s %s
XDG_SESSION_CLASS: user
TERM: xterm-256color
LESSOPEN: | /usr/bin/lesspipe %s
USER: ubuntu
SHLVL: 0
XDG_SESSION_ID: 20
VIRTUAL_ENV_PROMPT: (.env)
XDG_RUNTIME_DIR: /run/user/1000
PS1: (.env) \[\e]0;\u@\h: \w\a\]${debian_chroot:+($debian_chroot)}\[\033[01;32m\]\u@\h\[\033[00m\]:\[\033[01;34m\]\w\[\033[00m\]\$
SSH_CLIENT: 71.168.238.143 59937 22
XDG_DATA_DIRS: /usr/local/share:/usr/share:/var/lib/snapd/desktop
PATH: /home/ubuntu/.env/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
DBUS_SESSION_BUS_ADDRESS: unix:path=/run/user/1000/bus
SSH_TTY: /dev/pts/2
OLDPWD: /home/ubuntu
_: /home/ubuntu/.env/bin/python3
KMP_INIT_AT_FORK: FALSE
KMP_DUPLICATE_LIB_OK: True
[Pipeline] .... (step 1 of 3) Processing UnigramEncoder, total= 1.4min
[Pipeline] ............. (step 2 of 3) Processing tfidf, total= 2.0s
[Pipeline] ........ (step 3 of 3) Processing Classifier, total= 4.4min
INFO:birdwatch.run_scoring:ReputationScorer run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.run_scoring:MFExpansionScorer run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.run_scoring:MFCoreScorer run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.run_scoring:MFExpansionPlusScorer run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.run_scoring:MFGroupScorer_12 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.run_scoring:MFGroupScorer_13 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.run_scoring:ReputationScorer run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:ReputationScorer run_scorer_parallelizable: Loading data elapsed time: 22.60 secs (0.38 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for ReputationScorer set to: 12
INFO:birdwatch.run_scoring:MFCoreScorer run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFCoreScorer run_scorer_parallelizable: Loading data elapsed time: 22.80 secs (0.38 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFCoreScorer set to: 12
INFO:birdwatch.run_scoring:MFGroupScorer_12 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_12 run_scorer_parallelizable: Loading data elapsed time: 23.43 secs (0.39 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFGroupScorer_12 set to: 4
INFO:birdwatch.run_scoring:MFExpansionScorer run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFExpansionScorer run_scorer_parallelizable: Loading data elapsed time: 23.56 secs (0.39 mins)
INFO:birdwatch.run_scoring:MFGroupScorer_13 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_13 run_scorer_parallelizable: Loading data elapsed time: 23.57 secs (0.39 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFExpansionScorer set to: 12
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFGroupScorer_13 set to: 8
INFO:birdwatch.run_scoring:MFExpansionPlusScorer run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFExpansionPlusScorer run_scorer_parallelizable: Loading data elapsed time: 24.02 secs (0.40 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFExpansionPlusScorer set to: 12
INFO:birdwatch.scorer:Filtering ratings for ReputationScorer. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.scorer:Filtering ratings for MFCoreScorer. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.scorer:Filtering ratings for MFExpansionScorer. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_12. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_13. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.scorer:Filtering ratings for MFExpansionPlusScorer. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings after group filter: 764628
INFO:birdwatch.scorer:MFGroupScorer_12 Filter input elapsed time: 43.68 secs (0.73 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.mf_base_scorer:ratings summary MFGroupScorer_12: 3c2ef571abd917eaaf4a18edcc7583077ee3ca715f9a585291e8c377e9613e07
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 437309, Num Unique Notes Rated: 31027, Num Unique Raters: 6608
INFO:birdwatch.scorer:MFGroupScorer_12 Prepare ratings elapsed time: 0.24 secs (0.00 mins)
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFGroupScorer_12: f3cba71e0c7584b6d90e534b4cedb593c2463cbb424140a5e6cdf3969541e16d
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFGroupScorer_12: bab26056c2c51b2beff057f4e0fe86fa071404051fc10055597e708318a26b55
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFGroupScorer_12: 1b2a6ad46dcfd66350ebeb2e58eebae04708074b0cb986ec945580276c124614
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 6608, Notes: 31027
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 14.094466110162116
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 66.17872276029055
INFO:birdwatch.matrix_factorization:epoch 0 6.562259197235107
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.071473598480225
INFO:birdwatch.matrix_factorization:epoch 20 0.33518463373184204
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.266846626996994
INFO:birdwatch.matrix_factorization:epoch 40 0.1381341516971588
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09837325662374496
INFO:birdwatch.scorer: Ratings after group filter: 118317340
INFO:birdwatch.matrix_factorization:epoch 60 0.10990920662879944
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07621243596076965
INFO:birdwatch.matrix_factorization:epoch 80 0.10537681728601456
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07265415787696838
INFO:birdwatch.scorer: Ratings after group filter: 35062479
INFO:birdwatch.scorer:MFExpansionPlusScorer Filter input elapsed time: 50.81 secs (0.85 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.matrix_factorization:epoch 100 0.1048186868429184
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07219789177179337
INFO:birdwatch.matrix_factorization:epoch 120 0.10474533587694168
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07216211408376694
INFO:birdwatch.scorer:MFGroupScorer_13 Filter input elapsed time: 52.66 secs (0.88 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.matrix_factorization:epoch 140 0.10473541915416718
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07215089350938797
INFO:birdwatch.matrix_factorization:Num epochs: 146
INFO:birdwatch.matrix_factorization:epoch 146 0.10473485291004181
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07215223461389542
INFO:birdwatch.matrix_factorization:Global Intercept: 0.18742765486240387
INFO:birdwatch.scorer:MFGroupScorer_12 First MF/stable init elapsed time: 7.58 secs (0.13 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFGroupScorer_12
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.59 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.72 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.58 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.55 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.64 secs (0.01 mins)
INFO:birdwatch.scorer: Ratings after group filter: 118315149
INFO:birdwatch.scorer: Ratings after group filter: 102142736
INFO:birdwatch.scorer:MFExpansionScorer Filter input elapsed time: 64.19 secs (1.07 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.scorer:ReputationScorer Filter input elapsed time: 65.57 secs (1.09 mins)
INFO:birdwatch.reputation_scorer:seeding with 0
INFO:birdwatch.scorer: Ratings after group filter: 102142736
INFO:birdwatch.scorer:MFCoreScorer Filter input elapsed time: 67.26 secs (1.12 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.mf_base_scorer:ratings summary MFGroupScorer_13: e95c5625a0d4dd968718afbe26d9d681556853401ec0b51633dc280c165ab7af
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 32.07 secs (0.53 mins)
INFO:birdwatch.scorer:MFGroupScorer_12 Compute scored notes elapsed time: 39.03 secs (0.65 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.note_ratings:Total ratings: 764508 post-tombstones and 120 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 605526, including 605526 post-tombstones and 0 pre-tombstones.
INFO:birdwatch.note_ratings:Total valid ratings: 41228
INFO:birdwatch.scorer:MFGroupScorer_12 Compute valid ratings elapsed time: 1.01 secs (0.02 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_12 Helpfulness scores pre-harassment elapsed time: 0.14 secs (0.00 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 6608
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 22716
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 5863
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 5171
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 437309
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 370794
INFO:birdwatch.scorer:MFGroupScorer_12 Filtering by helpfulness score elapsed time: 0.50 secs (0.01 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 243971
1 15588
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 111235
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 217290, Num Unique Notes Rated: 17109, Num Unique Raters: 4533
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 206721
1 10569
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.04864006627088223
INFO:birdwatch.matrix_factorization:Using pos weight: 19.559182514902073 with BCEWithLogitsLoss
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 4533, Notes: 17109
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 12.700333157987025
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 47.93514228987426
INFO:birdwatch.matrix_factorization:epoch 0 3.3938112258911133
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.4814504384994507
INFO:birdwatch.matrix_factorization:epoch 20 0.7128185033798218
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.37842825055122375
INFO:birdwatch.matrix_factorization:epoch 40 0.4487408995628357
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.26448583602905273
INFO:birdwatch.matrix_factorization:epoch 60 0.4117359519004822
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.25155332684516907
INFO:birdwatch.matrix_factorization:epoch 80 0.406838059425354
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.24967393279075623
INFO:birdwatch.matrix_factorization:epoch 100 0.4058714509010315
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2489582747220993
INFO:birdwatch.matrix_factorization:Num epochs: 101
INFO:birdwatch.matrix_factorization:epoch 101 0.4058714509010315
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2489582747220993
INFO:birdwatch.matrix_factorization:Global Intercept: -0.3002163767814636
INFO:birdwatch.scorer:MFGroupScorer_12 Harassment tag consensus elapsed time: 2.76 secs (0.05 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFGroupScorer_12 Helpfulness scores post-harassment elapsed time: 0.17 secs (0.00 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 6608
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 22716
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 5539
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 4847
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 437309
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 317516
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 4847, Notes: 31015
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 10.237497984846042
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 65.50773674437797
INFO:birdwatch.matrix_factorization:epoch 0 0.3754280209541321
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.30170732736587524
INFO:birdwatch.matrix_factorization:epoch 20 0.10186462104320526
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06613680720329285
INFO:birdwatch.matrix_factorization:epoch 40 0.10004783421754837
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06793586164712906
INFO:birdwatch.matrix_factorization:epoch 60 0.09867382049560547
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06488165259361267
INFO:birdwatch.matrix_factorization:epoch 80 0.09862621873617172
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06506084650754929
INFO:birdwatch.matrix_factorization:epoch 100 0.09860589355230331
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06476974487304688
INFO:birdwatch.matrix_factorization:Num epochs: 103
INFO:birdwatch.matrix_factorization:epoch 103 0.09860695898532867
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06493175774812698
INFO:birdwatch.matrix_factorization:Global Intercept: 0.18789513409137726
INFO:birdwatch.constants:Final round MF elapsed time: 4.18 secs (0.07 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_12 prescoring, about to call diligence with 317516 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 001041D12A03F39CCB40BEA9458C469323254EEC76348B... -0.149588
1 002A62303516D0CCE7BCBD143AE53FACB0FE03168AEA4E... 0.191009
2 0037306269989273D720BBD181462AC844B31CB9003939... -0.305849
3 0049F294210C39AE0E4AECF5FC2AC7FC51B7E09B968CC3... 0.091642
4 00661AF4F42FD3F9F04048E1F668A3ADB341546490E117... 0.051435
... ... ...
4842 FFA492BC3E2F5B0DF00DC824605BC9FA92EB3DB63A4042... -0.449168
4843 FFA9BCEF8D874B50FCC1914BB47BE36B2BCAD5EC1396CD... 0.438851
4844 FFB689E24DF9F3E4E9DB93A95E13168392B1382A78C446... 0.079098
4845 FFC75BB262A6BBDC07F13902786D170008F7DC3D11B4DC... -0.619702
4846 FFEEE02BCED1134EB1C57875779C03F2135B72BB4C8E7F... 0.535221
[4847 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 4847, vs. num we are initializing: 4847
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 4847
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=18.042370 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.444522 | time=0.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.983139 | time=1.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.897624 | time=2.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.868616 | time=3.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=2.854172 | time=3.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=2.845141 | time=4.4s
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 34070222, Num Unique Notes Rated: 608321, Num Unique Raters: 160470
INFO:birdwatch.scorer:MFGroupScorer_13 Prepare ratings elapsed time: 18.21 secs (0.30 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=2.839076 | time=5.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=2.834849 | time=5.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=2.831749 | time=6.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=2.829500 | time=7.3s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(0.2601, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=2.829440 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.751500 | time=0.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.740840 | time=1.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.740027 | time=2.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=100 | loss=1.739998 | time=2.4s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.546930 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.473663 | time=0.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.472706 | time=0.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.472668 | time=1.0s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(1.1786, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 2.8295, 1.7400, 0.4727
INFO:birdwatch.scorer:MFGroupScorer_12 Low Diligence MF elapsed time: 11.12 secs (0.19 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.61 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.72 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.65 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.71 secs (0.01 mins)
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFGroupScorer_13: 0140f015592da55bc81d7c91f7870e8d00b1100bc24e2a8e89521269b1a2f48f
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFGroupScorer_13: bab26056c2c51b2beff057f4e0fe86fa071404051fc10055597e708318a26b55
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFGroupScorer_13: 1b2a6ad46dcfd66350ebeb2e58eebae04708074b0cb986ec945580276c124614
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 100691291, Num Unique Notes Rated: 1205894, Num Unique Raters: 590255
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 32.32 secs (0.54 mins)
INFO:birdwatch.constants:MFGroupScorer_12: Compute tag thresholds for percentiles elapsed time: 0.63 secs (0.01 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.run_scoring:MFGroupScorer_11 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 160470, Notes: 608321
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 56.00697986753704
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 212.3152115660248
INFO:birdwatch.matrix_factorization:epoch 0 6.642144203186035
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.204066276550293
INFO:birdwatch.mf_base_scorer:ratings summary MFExpansionPlusScorer: c2198f60420b6359f2488810e7f6425a3f37c27712ac4c0b8d5b149dfbe06904
INFO:birdwatch.run_scoring:MFGroupScorer_11 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_11 run_scorer_parallelizable: Loading data elapsed time: 19.16 secs (0.32 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFGroupScorer_11 set to: 4
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_11. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.mf_base_scorer:ratings summary MFCoreScorer: 6903bc703edd6c4c594895c5b01a3b6e0e242cd09bc55a62a94781769fc852f5
INFO:birdwatch.mf_base_scorer:ratings summary MFExpansionScorer: 1e064ba29cbf395160cd1baa4b27703664af00c10137b3543593690e6ccbc15f
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings after group filter: 1735379
INFO:birdwatch.scorer:MFGroupScorer_11 Filter input elapsed time: 45.03 secs (0.75 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.mf_base_scorer:ratings summary MFGroupScorer_11: e332ea9e9ba4960426c29a941bcc4e795ebd4179b79c14b6d35e01cf706ec47c
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 1102007, Num Unique Notes Rated: 91934, Num Unique Raters: 8768
INFO:birdwatch.scorer:MFGroupScorer_11 Prepare ratings elapsed time: 0.76 secs (0.01 mins)
INFO:birdwatch.matrix_factorization:epoch 20 0.3273569345474243
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.28068506717681885
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFGroupScorer_11: 65988814905281790c094924499778fee281743f74975cd87721713e1101b77d
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFGroupScorer_11: bab26056c2c51b2beff057f4e0fe86fa071404051fc10055597e708318a26b55
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFGroupScorer_11: 1b2a6ad46dcfd66350ebeb2e58eebae04708074b0cb986ec945580276c124614
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 8768, Notes: 91934
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 11.986936280375051
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 125.6851049270073
INFO:birdwatch.matrix_factorization:epoch 0 6.546855449676514
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.067481517791748
INFO:birdwatch.matrix_factorization:epoch 20 0.30668893456459045
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.23621338605880737
INFO:birdwatch.matrix_factorization:epoch 40 0.15802520513534546
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.12420892715454102
INFO:birdwatch.matrix_factorization:epoch 60 0.11111921072006226
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07841742783784866
INFO:birdwatch.matrix_factorization:epoch 80 0.10464991629123688
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0745537057518959
INFO:birdwatch.matrix_factorization:epoch 100 0.10383251309394836
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07395748794078827
INFO:birdwatch.matrix_factorization:epoch 120 0.10372518002986908
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07388006150722504
INFO:birdwatch.matrix_factorization:epoch 140 0.10371161997318268
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0738646388053894
INFO:birdwatch.matrix_factorization:Num epochs: 148
INFO:birdwatch.matrix_factorization:epoch 148 0.10371063649654388
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07386238873004913
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1659136414527893
INFO:birdwatch.scorer:MFGroupScorer_11 First MF/stable init elapsed time: 17.04 secs (0.28 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFGroupScorer_11
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 100691291, Num Unique Notes Rated: 1205894, Num Unique Raters: 590255
INFO:birdwatch.scorer:MFCoreScorer Prepare ratings elapsed time: 62.12 secs (1.04 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 149458, Notes: 123028
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 67.27695321390253
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 55.37976555286435
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 116569833, Num Unique Notes Rated: 1296974, Num Unique Raters: 747994
INFO:birdwatch.matrix_factorization:epoch 0 6.619696140289307
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.176379203796387
INFO:birdwatch.scorer:MFExpansionPlusScorer Prepare ratings elapsed time: 71.17 secs (1.19 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.61 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.73 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.58 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.58 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.matrix_factorization:epoch 20 0.30686208605766296
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.255319207906723
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 116567689, Num Unique Notes Rated: 1296971, Num Unique Raters: 747974
INFO:birdwatch.scorer:MFExpansionScorer Prepare ratings elapsed time: 68.86 secs (1.15 mins)
INFO:birdwatch.matrix_factorization:epoch 40 0.11687351018190384
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08992145210504532
INFO:birdwatch.matrix_factorization:epoch 60 0.09446366131305695
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07093754410743713
INFO:birdwatch.matrix_factorization:epoch 40 0.18463000655174255
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.15509241819381714
INFO:birdwatch.matrix_factorization:epoch 80 0.09115439653396606
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06826052069664001
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 33.39 secs (0.56 mins)
INFO:birdwatch.scorer:MFGroupScorer_11 Compute scored notes elapsed time: 41.37 secs (0.69 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.note_ratings:Total ratings: 1734848 post-tombstones and 531 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 1415596, including 1415593 post-tombstones and 3 pre-tombstones.
INFO:birdwatch.note_ratings:Total valid ratings: 85294
INFO:birdwatch.scorer:MFGroupScorer_11 Compute valid ratings elapsed time: 2.04 secs (0.03 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_11 Helpfulness scores pre-harassment elapsed time: 0.25 secs (0.00 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 8768
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 48937
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 7697
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 7119
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 1102007
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 923054
INFO:birdwatch.scorer:MFGroupScorer_11 Filtering by helpfulness score elapsed time: 1.34 secs (0.02 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 554112
1 32985
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 335957
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 456359, Num Unique Notes Rated: 43168, Num Unique Raters: 6330
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 436078
1 20281
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.04444088973812284
INFO:birdwatch.matrix_factorization:Using pos weight: 21.501799714018045 with BCEWithLogitsLoss
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 6330, Notes: 43168
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 10.571696627131209
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 72.09462875197472
INFO:birdwatch.matrix_factorization:epoch 0 3.248602867126465
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.3487613201141357
INFO:birdwatch.matrix_factorization:epoch 100 0.09072532504796982
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06801789253950119
INFO:birdwatch.matrix_factorization:epoch 20 0.6236096024513245
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2766990661621094
INFO:birdwatch.matrix_factorization:epoch 40 0.3938358724117279
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.22185608744621277
INFO:birdwatch.matrix_factorization:epoch 60 0.362994909286499
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.21204563975334167
INFO:birdwatch.matrix_factorization:epoch 80 0.35855334997177124
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2106824815273285
INFO:birdwatch.matrix_factorization:epoch 100 0.3579177260398865
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.21060511469841003
INFO:birdwatch.matrix_factorization:Num epochs: 104
INFO:birdwatch.matrix_factorization:epoch 104 0.35793840885162354
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.21066758036613464
INFO:birdwatch.matrix_factorization:Global Intercept: -0.2972601056098938
INFO:birdwatch.scorer:MFGroupScorer_11 Harassment tag consensus elapsed time: 5.60 secs (0.09 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFGroupScorer_11 Helpfulness scores post-harassment elapsed time: 0.33 secs (0.01 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 8768
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 48937
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 7130
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 6552
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 1102007
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 728170
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 6552, Notes: 91737
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 7.9375824367485315
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 111.13705738705738
INFO:birdwatch.matrix_factorization:epoch 0 0.38524729013442993
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.31691431999206543
INFO:birdwatch.matrix_factorization:epoch 20 0.1026439443230629
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06895100325345993
INFO:birdwatch.matrix_factorization:epoch 120 0.09067422151565552
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06799975037574768
INFO:birdwatch.matrix_factorization:epoch 40 0.09979289770126343
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06984815001487732
INFO:birdwatch.matrix_factorization:epoch 60 0.09856418520212173
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06731922924518585
INFO:birdwatch.matrix_factorization:epoch 80 0.0985039696097374
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0672340840101242
INFO:birdwatch.matrix_factorization:epoch 100 0.0984891727566719
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06704679876565933
INFO:birdwatch.matrix_factorization:Num epochs: 103
INFO:birdwatch.matrix_factorization:epoch 103 0.09848850965499878
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06718754023313522
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1667405664920807
INFO:birdwatch.constants:Final round MF elapsed time: 9.40 secs (0.16 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_11 prescoring, about to call diligence with 728170 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 00055253971F408A7AB80D461A543E010EC67DFAF29C45... -0.700129
1 0007EFAB89EB0BCC18E8994B141F291F33C9CB80B9332E... 0.254400
2 000E374F324AEBE8A92439EEC0C3DDE191F293CEF88509... 0.248246
3 001496B1846E8D6B3857F889E75BE6CCB011824EFE36A0... -0.406397
4 0026B9EAF060D14AFF58688B43EC51C5D2D92444A05DB8... -0.617673
... ... ...
6547 FFBD7465A1175CF9CC7D37B2DB9689BA6469FD38417350... -0.028069
6548 FFC1E16D320BD9589C96893BD161C6F9FDE5FC3C7C2D8E... -0.522187
6549 FFC83F58410624DF16CD78060076B6070F13ACA978E417... -0.307979
6550 FFE852866BE827C0D92EAC6FC2A68007E79120FD605090... -0.423836
6551 FFFA49720F254411E1F79CA757C403F0A0217240BC4922... 0.454771
[6552 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 6552, vs. num we are initializing: 6552
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 6552
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=15.903498 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.327427 | time=1.7s
INFO:birdwatch.matrix_factorization:epoch 140 0.09066678583621979
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06797289103269577
INFO:birdwatch.matrix_factorization:Num epochs: 141
INFO:birdwatch.matrix_factorization:epoch 141 0.09066678583621979
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06797289103269577
INFO:birdwatch.matrix_factorization:Global Intercept: 0.13837778568267822
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.885503 | time=3.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.796915 | time=5.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.764297 | time=6.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=2.746885 | time=8.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=2.736106 | time=10.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=2.728972 | time=11.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=2.724138 | time=13.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=2.720786 | time=15.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=2.718410 | time=16.8s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(-0.2027, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=2.718344 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.604440 | time=1.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.594247 | time=3.3s
INFO:birdwatch.matrix_factorization:epoch 60 0.11632546782493591
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09168201684951782
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.593413 | time=5.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.593413 | time=5.0s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.515919 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.455283 | time=1.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.454486 | time=1.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.454454 | time=2.4s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(0.6333, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 2.7184, 1.5934, 0.4545
INFO:birdwatch.scorer:MFGroupScorer_11 Low Diligence MF elapsed time: 25.07 secs (0.42 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.60 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.64 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.57 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.54 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.70 secs (0.01 mins)
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFCoreScorer: 099c75f5676634aebbee9d3781661451c5e2fe162a1d5e3752616c832ae8b31d
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFCoreScorer: bab26056c2c51b2beff057f4e0fe86fa071404051fc10055597e708318a26b55
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFCoreScorer: 1b2a6ad46dcfd66350ebeb2e58eebae04708074b0cb986ec945580276c124614
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 32.43 secs (0.54 mins)
INFO:birdwatch.constants:MFGroupScorer_11: Compute tag thresholds for percentiles elapsed time: 1.47 secs (0.02 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.run_scoring:MFGroupScorer_10 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.matrix_factorization:epoch 80 0.10604341328144073
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08182567358016968
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFExpansionScorer: 27d0f80081eb899c9a52d60cd32b94df11ca3859b98459f0d861f853f8d75b23
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFExpansionScorer: bab26056c2c51b2beff057f4e0fe86fa071404051fc10055597e708318a26b55
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFExpansionScorer: 1b2a6ad46dcfd66350ebeb2e58eebae04708074b0cb986ec945580276c124614
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFExpansionPlusScorer: fe89c853311746933ca2a395e837640fccdb18d4e9348788c9ed7867790705f2
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFExpansionPlusScorer: bab26056c2c51b2beff057f4e0fe86fa071404051fc10055597e708318a26b55
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFExpansionPlusScorer: 1b2a6ad46dcfd66350ebeb2e58eebae04708074b0cb986ec945580276c124614
INFO:birdwatch.run_scoring:MFGroupScorer_10 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_10 run_scorer_parallelizable: Loading data elapsed time: 18.80 secs (0.31 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFGroupScorer_10 set to: 4
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_10. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
noteId internalNoteFactor1
0 1354933402240229380 -0.109901
1 1357798998405447682 -0.502796
2 1360871260054503427 0.302926
3 1361842531655376899 0.321590
4 1362121547511521284 0.340940
... ... ...
123023 1513190235412353030 0.407456
123024 1649508090755317761 0.389938
123025 1819976965786669296 0.274859
123026 1645870102506622976 -0.201437
123027 1642576751309062145 -0.047146
[123028 rows x 2 columns],
raterInitState:
raterParticipantId internalRaterFactor1
0 F35972BBD2F99515FD974E9C7AFD899970F2E4A5911513... -0.760034
1 9D41130B60D66BCC6FAA1115676546405A37F3BC90991F... -0.753539
2 EBDCB80B1EC4A9FB51C8A562377D72F9569692DEFFC8BC... -0.778270
3 E23374E04DD1B97ED5E4BE68F56CD25AE5DE53DD2A3541... -0.406109
4 60D2AB8839D3EF47DD1C377DD8246EBA76ECB17DD65F13... -0.533711
... ... ...
149453 7C60F353091E8F57A620BC71CF1B2A8C810EA76EC08066... 0.403700
149454 52AA9044A0F07DAA38C17980B05939439F2D9997EC18B6... -0.601153
149455 B52B43A6F65EEF7B6F4384E83140C4DF05B697E95F1C94... 0.007266
149456 618D046E3843E3EEF9DF23CD573651832C4A09A79DB4FF... 0.717910
149457 5E45E0D9B9BCB6DED42386DA77A71E6EC4C07578AA3158... 0.236773
[149458 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 590255, vs. num we are initializing: 149458
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 440797
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 149458
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 1205894, vs. num we are initializing: 123028
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteFactor1s: 1189336
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteFactor1s: 16558
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.120153 | time=0.7s
INFO:birdwatch.scorer:MFCoreScorer Prepare data for stable initialization elapsed time: 59.04 secs (0.98 mins)
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 149458, Notes: 123028
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 67.27695321390253
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 55.37976555286435
INFO:birdwatch.matrix_factorization:epoch 0 6.619696140289307
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.176379203796387
INFO:birdwatch.matrix_factorization:epoch 100 0.10486361384391785
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08084195852279663
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.matrix_factorization:epoch 20 0.30686208605766296
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.255319207906723
INFO:birdwatch.scorer: Ratings after group filter: 993406
INFO:birdwatch.scorer:MFGroupScorer_10 Filter input elapsed time: 43.48 secs (0.72 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.mf_base_scorer:ratings summary MFGroupScorer_10: c2feb68644f0a2e54256799933e192d83362cac5abba0878e666f8736decee87
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 492516, Num Unique Notes Rated: 43889, Num Unique Raters: 6231
INFO:birdwatch.scorer:MFGroupScorer_10 Prepare ratings elapsed time: 0.28 secs (0.00 mins)
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFGroupScorer_10: a7060dd5ed6ed5d0e29ea38bbb76e1272b098b37b950938fa7d57000ceb7e1ef
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFGroupScorer_10: bab26056c2c51b2beff057f4e0fe86fa071404051fc10055597e708318a26b55
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFGroupScorer_10: 1b2a6ad46dcfd66350ebeb2e58eebae04708074b0cb986ec945580276c124614
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 6231, Notes: 43889
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 11.221855134543963
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 79.04285026480501
INFO:birdwatch.matrix_factorization:epoch 0 6.554954528808594
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.067558765411377
INFO:birdwatch.matrix_factorization:epoch 20 0.352897971868515
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2666269838809967
INFO:birdwatch.matrix_factorization:epoch 40 0.11687351018190384
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08992145210504532
INFO:birdwatch.matrix_factorization:epoch 40 0.16407400369644165
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.12644898891448975
INFO:birdwatch.matrix_factorization:epoch 60 0.11047092080116272
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0750611424446106
INFO:birdwatch.matrix_factorization:epoch 80 0.10238513350486755
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07031723856925964
INFO:birdwatch.matrix_factorization:epoch 100 0.10141704976558685
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0695534497499466
INFO:birdwatch.matrix_factorization:epoch 120 0.10129078477621078
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06945496052503586
INFO:birdwatch.matrix_factorization:epoch 140 0.10127484798431396
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06944364309310913
INFO:birdwatch.matrix_factorization:Num epochs: 150
INFO:birdwatch.matrix_factorization:epoch 150 0.10127347707748413
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06944052129983902
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1762676239013672
INFO:birdwatch.scorer:MFGroupScorer_10 First MF/stable init elapsed time: 8.01 secs (0.13 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFGroupScorer_10
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.matrix_factorization:epoch 60 0.09446366131305695
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07093754410743713
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.64 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.71 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.65 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.60 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.72 secs (0.01 mins)
INFO:birdwatch.scorer:MFExpansionScorer Prepare data for stable initialization elapsed time: 68.47 secs (1.14 mins)
INFO:birdwatch.matrix_factorization:epoch 80 0.09115439653396606
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06826052069664001
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 143275, Notes: 102079
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 62.60333663143252
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 44.60293840516489
INFO:birdwatch.matrix_factorization:epoch 0 6.619355201721191
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.175113677978516
INFO:birdwatch.scorer:MFExpansionPlusScorer Prepare data for stable initialization elapsed time: 70.43 secs (1.17 mins)
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 143274, Notes: 102077
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 62.60223164865739
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 44.60158856456859
INFO:birdwatch.matrix_factorization:epoch 0 6.61724853515625
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.172989845275879
INFO:birdwatch.matrix_factorization:epoch 20 0.3509570062160492
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.29648557305336
INFO:birdwatch.matrix_factorization:epoch 100 0.09072532504796982
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06801789253950119
INFO:birdwatch.matrix_factorization:epoch 20 0.37635836005210876
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3036267161369324
INFO:birdwatch.matrix_factorization:epoch 40 0.1297946572303772
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10162457078695297
INFO:birdwatch.matrix_factorization:epoch 120 0.09067422151565552
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06799975037574768
INFO:birdwatch.matrix_factorization:epoch 120 0.10471677780151367
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08084765076637268
INFO:birdwatch.matrix_factorization:epoch 40 0.11769197881221771
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08740263432264328
INFO:birdwatch.matrix_factorization:epoch 60 0.09579639136791229
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07143382728099823
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 33.63 secs (0.56 mins)
INFO:birdwatch.scorer:MFGroupScorer_10 Compute scored notes elapsed time: 41.16 secs (0.69 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.note_ratings:Total ratings: 993069 post-tombstones and 337 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 799077, including 799077 post-tombstones and 0 pre-tombstones.
INFO:birdwatch.note_ratings:Total valid ratings: 48495
INFO:birdwatch.scorer:MFGroupScorer_10 Compute valid ratings elapsed time: 1.20 secs (0.02 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_10 Helpfulness scores pre-harassment elapsed time: 0.17 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:epoch 60 0.09446202218532562
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0713285282254219
INFO:birdwatch.helpfulness_scores:Unique Raters: 6231
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 30734
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 5769
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 5114
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 492516
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 416619
INFO:birdwatch.scorer:MFGroupScorer_10 Filtering by helpfulness score elapsed time: 0.58 secs (0.01 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 265129
1 15870
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 135620
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 212213, Num Unique Notes Rated: 19225, Num Unique Raters: 4391
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 203329
1 8884
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.04186359930824219
INFO:birdwatch.matrix_factorization:Using pos weight: 22.88710040522287 with BCEWithLogitsLoss
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 4391, Notes: 19225
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 11.038387516254877
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 48.32908221361877
INFO:birdwatch.matrix_factorization:epoch 0 3.2986252307891846
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.391450047492981
INFO:birdwatch.matrix_factorization:epoch 20 0.6214652061462402
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.27479344606399536
INFO:birdwatch.matrix_factorization:epoch 40 0.40142756700515747
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2236347645521164
INFO:birdwatch.matrix_factorization:epoch 60 0.37024053931236267
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.21267293393611908
INFO:birdwatch.matrix_factorization:epoch 140 0.09066678583621979
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06797289103269577
INFO:birdwatch.matrix_factorization:Num epochs: 141
INFO:birdwatch.matrix_factorization:epoch 141 0.09066678583621979
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06797289103269577
INFO:birdwatch.matrix_factorization:Global Intercept: 0.13837778568267822
INFO:birdwatch.matrix_factorization:epoch 80 0.3657989501953125
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.21165578067302704
INFO:birdwatch.scorer:MFCoreScorer MF on stable-initialization subset elapsed time: 75.80 secs (1.26 mins)
INFO:birdwatch.matrix_factorization:epoch 100 0.3651295304298401
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2116529941558838
INFO:birdwatch.matrix_factorization:epoch 120 0.3650487959384918
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2116595059633255
INFO:birdwatch.matrix_factorization:Num epochs: 134
INFO:birdwatch.matrix_factorization:epoch 134 0.3650420308113098
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.21166589856147766
INFO:birdwatch.matrix_factorization:Global Intercept: -0.31395378708839417
INFO:birdwatch.scorer:MFGroupScorer_10 Harassment tag consensus elapsed time: 3.75 secs (0.06 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFGroupScorer_10 Helpfulness scores post-harassment elapsed time: 0.22 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:epoch 80 0.09116222709417343
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06830676645040512
INFO:birdwatch.helpfulness_scores:Unique Raters: 6231
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 30734
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 5431
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 4776
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 492516
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 343933
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 4776, Notes: 43807
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 7.851096856666743
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 72.01277219430486
INFO:birdwatch.matrix_factorization:epoch 0 0.373954713344574
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.30225273966789246
INFO:birdwatch.matrix_factorization:epoch 20 0.09792043268680573
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06257890909910202
INFO:birdwatch.matrix_factorization:epoch 40 0.09610128402709961
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06438472121953964
INFO:birdwatch.matrix_factorization:epoch 80 0.09104418754577637
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06816454231739044
INFO:birdwatch.matrix_factorization:epoch 60 0.09473082423210144
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06145293265581131
INFO:birdwatch.matrix_factorization:epoch 80 0.09468600898981094
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06161431223154068
INFO:birdwatch.matrix_factorization:epoch 100 0.09466652572154999
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06135568767786026
INFO:birdwatch.matrix_factorization:Num epochs: 103
INFO:birdwatch.matrix_factorization:epoch 103 0.09466741979122162
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06150958314538002
INFO:birdwatch.matrix_factorization:Global Intercept: 0.17643898725509644
INFO:birdwatch.constants:Final round MF elapsed time: 4.69 secs (0.08 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_10 prescoring, about to call diligence with 343933 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 000D424F8BBD591A0725D5F6F54F78C50C8DC591637C0E... 0.073382
1 002ADDCBF2E4A2F363B766024F866D803ED65C8AF3759C... -0.510768
2 0033B06B2B9E22875E057C84D99E2634127C4291A081B4... -0.320292
3 003FDF9A655454DDED55D10DDC81830B57A59BEED1847D... 0.449039
4 004FF8092304B71DF706338FA263DCACD3EE439A34C930... -0.642459
... ... ...
4771 FFB14685679DE209BD2EB051060B796657AE6158314F58... -0.579395
4772 FFC6993701C48435AB714C158FFD8420268574F35A55EE... -0.096785
4773 FFC7B88FD9AA6574D525D426D7CE13466423DA88D27E19... -0.544985
4774 FFE9E0E39C0049AD113CEF0AB5178393F13B15C4E7B31C... -0.108100
4775 FFF104BC8D2B5E53432FF3E605B5D5D76EDECE29AFA0F5... 0.584097
[4776 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 4776, vs. num we are initializing: 4776
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 4776
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=16.223921 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.269604 | time=1.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.824924 | time=1.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.731604 | time=2.7s
INFO:birdwatch.matrix_factorization:epoch 100 0.09058205783367157
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06791973859071732
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.697063 | time=3.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=2.678612 | time=4.4s
INFO:birdwatch.matrix_factorization:epoch 100 0.09056269377470016
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06790971755981445
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=2.666874 | time=5.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=2.658832 | time=6.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=2.653273 | time=7.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=2.649260 | time=7.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=2.646287 | time=8.7s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(-0.2673, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=2.646210 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.550133 | time=0.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.541141 | time=1.7s
INFO:birdwatch.matrix_factorization:epoch 120 0.09050930291414261
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06783805042505264
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.540339 | time=2.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=100 | loss=1.540313 | time=2.8s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.538402 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.475103 | time=0.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.474280 | time=1.0s
INFO:birdwatch.matrix_factorization:epoch 120 0.09050682187080383
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06784248352050781
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.474247 | time=1.3s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(0.4904, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 2.6463, 1.5403, 0.4742
INFO:birdwatch.scorer:MFGroupScorer_10 Low Diligence MF elapsed time: 13.11 secs (0.22 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.61 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:epoch 140 0.09049920737743378
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06784924864768982
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.77 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:Num epochs: 144
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.62 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:epoch 144 0.09049887955188751
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06783787906169891
INFO:birdwatch.matrix_factorization:Global Intercept: 0.136198952794075
INFO:birdwatch.scorer:MFExpansionScorer MF on stable-initialization subset elapsed time: 63.18 secs (1.05 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.61 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:epoch 140 0.09049898386001587
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0678447037935257
INFO:birdwatch.matrix_factorization:Num epochs: 142
INFO:birdwatch.matrix_factorization:epoch 142 0.0904988944530487
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06784095615148544
INFO:birdwatch.matrix_factorization:Global Intercept: 0.13643474876880646
INFO:birdwatch.scorer:MFExpansionPlusScorer MF on stable-initialization subset elapsed time: 58.03 secs (0.97 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.73 secs (0.01 mins)
INFO:birdwatch.matrix_factorization:epoch 140 0.10469582676887512
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08087491244077682
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.016384 | time=139.1s
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 33.73 secs (0.56 mins)
INFO:birdwatch.constants:MFGroupScorer_10: Compute tag thresholds for percentiles elapsed time: 0.79 secs (0.01 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.run_scoring:MFGroupScorer_9 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 590255, Notes: 1205894
INFO:birdwatch.matrix_factorization:initializing notes
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py, in _initialize_parameters, at line 180: noteInit = self.noteIdMap.merge(
PandasTypeError: Output mismatch on noteIndex_y: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 83.49928849467697
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 170.58947573506367
INFO:birdwatch.run_scoring:MFGroupScorer_9 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_9 run_scorer_parallelizable: Loading data elapsed time: 19.14 secs (0.32 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFGroupScorer_9 set to: 4
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_9. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.matrix_factorization:epoch 0 0.2504432797431946
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.21773739159107208
INFO:birdwatch.matrix_factorization:epoch 160 0.1046687662601471
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08083144575357437
INFO:birdwatch.matrix_factorization:Num epochs: 170
INFO:birdwatch.matrix_factorization:epoch 170 0.10462913662195206
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08075783401727676
INFO:birdwatch.matrix_factorization:Global Intercept: 0.14974866807460785
INFO:birdwatch.scorer:MFGroupScorer_13 First MF/stable init elapsed time: 460.58 secs (7.68 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFGroupScorer_13
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 747974, Notes: 1296971
INFO:birdwatch.matrix_factorization:initializing notes
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py, in _initialize_parameters, at line 180: noteInit = self.noteIdMap.merge(
PandasTypeError: Output mismatch on noteIndex_y: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 747994, Notes: 1296974
INFO:birdwatch.matrix_factorization:initializing notes
INFO:birdwatch.matrix_factorization:initializing users
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py, in _initialize_parameters, at line 180: noteInit = self.noteIdMap.merge(
PandasTypeError: Output mismatch on noteIndex_y: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 89.87686617511109
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 155.84457347447906
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 89.87831136167726
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 155.8432728070011
INFO:birdwatch.scorer: Ratings after group filter: 5553700
INFO:birdwatch.scorer:MFGroupScorer_9 Filter input elapsed time: 44.48 secs (0.74 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.matrix_factorization:epoch 0 0.24713310599327087
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.21589761972427368
INFO:birdwatch.matrix_factorization:epoch 0 0.24708105623722076
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.21586740016937256
INFO:birdwatch.mf_base_scorer:ratings summary MFGroupScorer_9: ce8e64445ad8a33f65337cac310965b53c72e2e6aafb0d6d4180524a59252b2a
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 4864106, Num Unique Notes Rated: 157547, Num Unique Raters: 40204
INFO:birdwatch.scorer:MFGroupScorer_9 Prepare ratings elapsed time: 2.38 secs (0.04 mins)
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFGroupScorer_9: 86e8c538ad84ecdc7b51d83ace7cd6f79b3ec79d0433a193438b0ff32b773345
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFGroupScorer_9: bab26056c2c51b2beff057f4e0fe86fa071404051fc10055597e708318a26b55
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFGroupScorer_9: 1b2a6ad46dcfd66350ebeb2e58eebae04708074b0cb986ec945580276c124614
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 40204, Notes: 157547
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 30.873999504909644
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 120.98562332106258
INFO:birdwatch.matrix_factorization:epoch 0 6.20347785949707
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 5.748543739318848
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.matrix_factorization:epoch 20 0.32802581787109375
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.26613491773605347
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.62 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.74 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.65 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.66 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.73 secs (0.01 mins)
INFO:birdwatch.matrix_factorization:epoch 40 0.123911552131176
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09102359414100647
INFO:birdwatch.matrix_factorization:epoch 60 0.1044592410326004
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07506925612688065
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.015044 | time=275.7s
INFO:birdwatch.matrix_factorization:epoch 80 0.10081648826599121
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07260991632938385
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.17 secs (0.57 mins)
INFO:birdwatch.scorer:MFGroupScorer_13 Compute scored notes elapsed time: 78.28 secs (1.30 mins)
INFO:birdwatch.matrix_factorization:epoch 100 0.1004866287112236
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0723324567079544
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.matrix_factorization:epoch 20 0.12169932574033737
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09570682793855667
INFO:birdwatch.matrix_factorization:epoch 120 0.1004253551363945
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07231764495372772
INFO:birdwatch.matrix_factorization:epoch 140 0.10041990131139755
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07231421023607254
INFO:birdwatch.note_ratings:Total ratings: 34848627 post-tombstones and 213852 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 28402760, including 28336976 post-tombstones and 65784 pre-tombstones.
INFO:birdwatch.matrix_factorization:Num epochs: 145
INFO:birdwatch.matrix_factorization:epoch 145 0.10041949898004532
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0723150447010994
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1687842160463333
INFO:birdwatch.scorer:MFGroupScorer_9 First MF/stable init elapsed time: 90.45 secs (1.51 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFGroupScorer_9
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.65 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.76 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.note_ratings:Total valid ratings: 1378878
INFO:birdwatch.scorer:MFGroupScorer_13 Compute valid ratings elapsed time: 46.50 secs (0.78 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.75 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.64 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.73 secs (0.01 mins)
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_13 Helpfulness scores pre-harassment elapsed time: 1.92 secs (0.03 mins)
INFO:birdwatch.matrix_factorization:epoch 20 0.12331057339906693
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09608878940343857
INFO:birdwatch.matrix_factorization:epoch 20 0.12331555783748627
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09608767926692963
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 33.86 secs (0.56 mins)
INFO:birdwatch.scorer:MFGroupScorer_9 Compute scored notes elapsed time: 45.71 secs (0.76 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 160470
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 222125
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 118794
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.note_ratings:Total ratings: 5552738 post-tombstones and 962 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 4419036, including 4419031 post-tombstones and 5 pre-tombstones.
INFO:birdwatch.note_ratings:Total valid ratings: 361283
INFO:birdwatch.scorer:MFGroupScorer_9 Compute valid ratings elapsed time: 6.52 secs (0.11 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_9 Helpfulness scores pre-harassment elapsed time: 0.55 secs (0.01 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 40204
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 89428
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 34424
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 32174
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 4864106
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 4112847
INFO:birdwatch.scorer:MFGroupScorer_9 Filtering by helpfulness score elapsed time: 6.65 secs (0.11 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 2702158
1 184698
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 1225991
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 112054
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 34070222
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 26309634
INFO:birdwatch.scorer:MFGroupScorer_13 Filtering by helpfulness score elapsed time: 49.82 secs (0.83 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 2733382, Num Unique Notes Rated: 103315, Num Unique Raters: 30776
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 2571590
1 161792
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.05919114123090004
INFO:birdwatch.matrix_factorization:Using pos weight: 15.894419996044302 with BCEWithLogitsLoss
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 30776, Notes: 103315
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 26.456777815418864
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 88.81537561736418
INFO:birdwatch.matrix_factorization:epoch 0 3.364053726196289
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.4735115766525269
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 14773810
1 1496958
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 9968271
INFO:birdwatch.matrix_factorization:epoch 20 0.7234067916870117
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.42424485087394714
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 15844694, Num Unique Notes Rated: 450347, Num Unique Raters: 107088
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 14399887
1 1444807
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.matrix_factorization:epoch 40 0.4569048583507538
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2980141341686249
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.09118554135535846
INFO:birdwatch.matrix_factorization:Using pos weight: 9.966650909083357 with BCEWithLogitsLoss
INFO:birdwatch.matrix_factorization:epoch 60 0.4193721413612366
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2851749360561371
INFO:birdwatch.matrix_factorization:epoch 80 0.4144599139690399
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.28278297185897827
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 107088, Notes: 450347
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 35.183300876879386
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 147.95956596444046
INFO:birdwatch.matrix_factorization:epoch 0 3.1848554611206055
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.3389382362365723
INFO:birdwatch.matrix_factorization:epoch 100 0.41376984119415283
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.28245529532432556
INFO:birdwatch.matrix_factorization:epoch 120 0.41366851329803467
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.28244003653526306
INFO:birdwatch.matrix_factorization:epoch 40 0.11224709451198578
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08672188967466354
INFO:birdwatch.matrix_factorization:Num epochs: 126
INFO:birdwatch.matrix_factorization:epoch 126 0.4136626720428467
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.28242769837379456
INFO:birdwatch.matrix_factorization:Global Intercept: -0.22359012067317963
INFO:birdwatch.scorer:MFGroupScorer_9 Harassment tag consensus elapsed time: 47.29 secs (0.79 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFGroupScorer_9 Helpfulness scores post-harassment elapsed time: 1.02 secs (0.02 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=0.014982 | time=425.4s
INFO:birdwatch.helpfulness_scores:Unique Raters: 40204
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 89428
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 30605
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 28355
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 4864106
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 3153184
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 28355, Notes: 157405
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 20.032298846923542
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 111.20380885205431
INFO:birdwatch.matrix_factorization:epoch 0 0.3978501260280609
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3303650915622711
INFO:birdwatch.matrix_factorization:epoch 20 0.10245437920093536
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07018935680389404
INFO:birdwatch.matrix_factorization:epoch 20 0.682984471321106
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3960767686367035
INFO:birdwatch.matrix_factorization:epoch 40 0.09849506616592407
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07023423910140991
INFO:birdwatch.matrix_factorization:epoch 60 0.09785455465316772
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06930186599493027
INFO:birdwatch.matrix_factorization:epoch 80 0.09767352044582367
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06839799880981445
INFO:birdwatch.matrix_factorization:Num epochs: 82
INFO:birdwatch.matrix_factorization:epoch 82 0.09767346829175949
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06861159205436707
INFO:birdwatch.matrix_factorization:Global Intercept: 0.17108562588691711
INFO:birdwatch.constants:Final round MF elapsed time: 42.30 secs (0.71 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_9 prescoring, about to call diligence with 3153184 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 00029D1FDD352D79B5073189C3F2BDF6377581F50D66C1... -0.626822
1 000415A1E3D1DA95BD626E1D938E4A9AFFB446D1A7D532... 0.670846
2 00041B33023A7D5BCE252803A32E50E9AFCC1584F63ED4... -0.257271
3 0005FD5ECF92B548D17E663347D5E696806076F75457A1... -0.361922
4 000929DF3AFDB652A896FC0BA7FF91D9FBF4F3214D8392... -0.486622
... ... ...
28350 FFF69B7E7ACFBB1E413F8B85384A9EB245A8D8B85F76C9... 0.006755
28351 FFF771FF9CA763466ADA4DA853867E7371DEE6D71C50CB... -0.333397
28352 FFFDAB98EE31EC0CC51169937F859D5B676870C6470C19... 0.471107
28353 FFFEB3E291D915645E08FD13A9BFE66B5912FE45306D25... -0.326330
28354 FFFF8C877BDC3CEFEFD0D4C5F0E8B4BE537F5023A1F31F... -0.519399
[28355 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 28355, vs. num we are initializing: 28355
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 28355
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=17.572601 | time=0.1s
INFO:birdwatch.matrix_factorization:epoch 40 0.4453316330909729
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.31214165687561035
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.543847 | time=8.2s
INFO:birdwatch.matrix_factorization:epoch 40 0.11341135948896408
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08803565800189972
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.131739 | time=16.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=3.070398 | time=24.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=3.054358 | time=31.7s
INFO:birdwatch.matrix_factorization:epoch 60 0.4118565618991852
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.29874590039253235
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=3.047830 | time=39.9s
INFO:birdwatch.matrix_factorization:epoch 40 0.11341220140457153
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08803749829530716
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=3.044351 | time=49.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=3.042202 | time=58.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=3.040705 | time=67.6s
INFO:birdwatch.matrix_factorization:epoch 80 0.40714937448501587
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.29668211936950684
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=3.039624 | time=75.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=3.038874 | time=84.0s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(0.7073, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=3.038853 | time=0.0s
INFO:birdwatch.matrix_factorization:epoch 60 0.1109887957572937
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0859370306134224
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.861498 | time=7.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.850914 | time=14.8s
INFO:birdwatch.matrix_factorization:epoch 100 0.40649089217185974
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.29630595445632935
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.850127 | time=22.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=100 | loss=1.850102 | time=24.6s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.408697 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.336647 | time=4.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.335764 | time=9.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=0.014979 | time=589.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.335727 | time=11.3s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(1.8712, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 3.0389, 1.8501, 0.3357
INFO:birdwatch.scorer:MFGroupScorer_9 Low Diligence MF elapsed time: 123.59 secs (2.06 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.64 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.77 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.65 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.71 secs (0.01 mins)
INFO:birdwatch.matrix_factorization:epoch 120 0.40638047456741333
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2962661385536194
INFO:birdwatch.matrix_factorization:epoch 60 0.11200405657291412
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08671385049819946
INFO:birdwatch.matrix_factorization:epoch 140 0.40635645389556885
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.29625847935676575
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 35.64 secs (0.59 mins)
INFO:birdwatch.matrix_factorization:Num epochs: 145
INFO:birdwatch.matrix_factorization:epoch 145 0.40635353326797485
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.29625794291496277
INFO:birdwatch.matrix_factorization:Global Intercept: -0.20274947583675385
INFO:birdwatch.scorer:MFGroupScorer_13 Harassment tag consensus elapsed time: 260.94 secs (4.35 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.reputation_matrix_factorization:epoch=130 | loss=0.014979 | time=642.2s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(0.4173, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.172573 | time=0.8s
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFGroupScorer_13 Helpfulness scores post-harassment elapsed time: 5.71 secs (0.10 mins)
INFO:birdwatch.constants:MFGroupScorer_9: Compute tag thresholds for percentiles elapsed time: 7.36 secs (0.12 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.run_scoring:MFGroupScorer_8 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.matrix_factorization:epoch 60 0.11200381815433502
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08671258389949799
INFO:birdwatch.run_scoring:MFGroupScorer_8 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_8 run_scorer_parallelizable: Loading data elapsed time: 20.34 secs (0.34 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFGroupScorer_8 set to: 4
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_8. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.helpfulness_scores:Unique Raters: 160470
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 222125
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 109801
INFO:birdwatch.matrix_factorization:epoch 80 0.11082334816455841
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08564222604036331
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 103061
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 34070222
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 19811605
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 103061, Notes: 607519
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 32.61067555088812
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 192.23183357429096
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.matrix_factorization:epoch 0 0.4033586382865906
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.343523234128952
INFO:birdwatch.scorer: Ratings after group filter: 755067
INFO:birdwatch.scorer:MFGroupScorer_8 Filter input elapsed time: 44.72 secs (0.75 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.mf_base_scorer:ratings summary MFGroupScorer_8: e38b8c9cc50be625183f1ebfbfbdc7fe3b9dd38afa4f8d3072d6cf5a9f01e928
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 275946, Num Unique Notes Rated: 33053, Num Unique Raters: 3306
INFO:birdwatch.scorer:MFGroupScorer_8 Prepare ratings elapsed time: 0.22 secs (0.00 mins)
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFGroupScorer_8: 5ba7b92ddf9b0604490781d94cf5fb503c3712d4557bb9fe0141378f65bb5b36
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFGroupScorer_8: bab26056c2c51b2beff057f4e0fe86fa071404051fc10055597e708318a26b55
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFGroupScorer_8: 1b2a6ad46dcfd66350ebeb2e58eebae04708074b0cb986ec945580276c124614
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 3306, Notes: 33053
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 8.348591655825492
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 83.46823956442832
INFO:birdwatch.matrix_factorization:epoch 0 6.579975605010986
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.086886405944824
INFO:birdwatch.matrix_factorization:epoch 20 0.3220418095588684
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.24266822636127472
INFO:birdwatch.matrix_factorization:epoch 40 0.1495606005191803
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11007282882928848
INFO:birdwatch.matrix_factorization:epoch 60 0.1065634936094284
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07200613617897034
INFO:birdwatch.matrix_factorization:epoch 80 0.10056588053703308
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06800234317779541
INFO:birdwatch.matrix_factorization:epoch 100 0.09981906414031982
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06731637567281723
INFO:birdwatch.matrix_factorization:epoch 120 0.09971969574689865
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06720536947250366
INFO:birdwatch.matrix_factorization:epoch 140 0.09970708191394806
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06720436364412308
INFO:birdwatch.matrix_factorization:Num epochs: 148
INFO:birdwatch.matrix_factorization:epoch 148 0.09970612078905106
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06720240414142609
INFO:birdwatch.matrix_factorization:Global Intercept: 0.17383065819740295
INFO:birdwatch.scorer:MFGroupScorer_8 First MF/stable init elapsed time: 5.25 secs (0.09 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFGroupScorer_8
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.66 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.74 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.64 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.73 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.19 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.83 secs (0.01 mins)
INFO:birdwatch.matrix_factorization:epoch 20 0.10804815590381622
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07902276515960693
INFO:birdwatch.matrix_factorization:epoch 80 0.11184205114841461
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08650998771190643
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.44 secs (0.57 mins)
INFO:birdwatch.scorer:MFGroupScorer_8 Compute scored notes elapsed time: 41.96 secs (0.70 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.note_ratings:Total ratings: 754838 post-tombstones and 229 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 603028, including 603028 post-tombstones and 0 pre-tombstones.
INFO:birdwatch.note_ratings:Total valid ratings: 27559
INFO:birdwatch.scorer:MFGroupScorer_8 Compute valid ratings elapsed time: 1.12 secs (0.02 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_8 Helpfulness scores pre-harassment elapsed time: 0.14 secs (0.00 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 3306
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 22616
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 3147
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 2844
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 275946
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 257245
INFO:birdwatch.scorer:MFGroupScorer_8 Filtering by helpfulness score elapsed time: 0.33 secs (0.01 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 154971
1 10814
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 91460
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 110974, Num Unique Notes Rated: 14345, Num Unique Raters: 2210
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 105610
1 5364
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.04833564618739525
INFO:birdwatch.matrix_factorization:Using pos weight: 19.688665175242356 with BCEWithLogitsLoss
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 2210, Notes: 14345
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 7.73607528755664
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 50.21447963800905
INFO:birdwatch.matrix_factorization:epoch 0 3.1716248989105225
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.267361044883728
INFO:birdwatch.matrix_factorization:epoch 20 0.6471165418624878
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.29546457529067993
INFO:birdwatch.matrix_factorization:epoch 40 0.39620450139045715
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.21435728669166565
INFO:birdwatch.matrix_factorization:epoch 60 0.36399292945861816
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2028387039899826
INFO:birdwatch.matrix_factorization:epoch 80 0.3589763641357422
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.20143675804138184
INFO:birdwatch.matrix_factorization:epoch 100 0.35827311873435974
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.20115342736244202
INFO:birdwatch.matrix_factorization:Num epochs: 103
INFO:birdwatch.matrix_factorization:epoch 103 0.3582633435726166
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.20116233825683594
INFO:birdwatch.matrix_factorization:Global Intercept: -0.3194645345211029
INFO:birdwatch.scorer:MFGroupScorer_8 Harassment tag consensus elapsed time: 1.75 secs (0.03 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFGroupScorer_8 Helpfulness scores post-harassment elapsed time: 0.17 secs (0.00 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 3306
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 22616
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 2964
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 2661
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 275946
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 221134
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 2661, Notes: 33041
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 6.692715111528101
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 83.10184141300263
INFO:birdwatch.matrix_factorization:epoch 0 0.37918394804000854
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.30834564566612244
INFO:birdwatch.matrix_factorization:epoch 20 0.10088010132312775
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06582921743392944
INFO:birdwatch.matrix_factorization:epoch 40 0.09664016962051392
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06504671275615692
INFO:birdwatch.matrix_factorization:epoch 60 0.09514918178319931
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.061900824308395386
INFO:birdwatch.matrix_factorization:epoch 80 0.09505777060985565
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06201479583978653
INFO:birdwatch.matrix_factorization:epoch 100 0.09502474218606949
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06188756600022316
INFO:birdwatch.matrix_factorization:Num epochs: 102
INFO:birdwatch.matrix_factorization:epoch 102 0.0950261726975441
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.061940036714076996
INFO:birdwatch.matrix_factorization:Global Intercept: 0.17209193110466003
INFO:birdwatch.constants:Final round MF elapsed time: 3.72 secs (0.06 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_8 prescoring, about to call diligence with 221134 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 0026E9A04A48A9CF87EA5FA9499883B8868F322F089686... -0.484264
1 002CE9F3E04AE7DC8B2629A4C755E7120416A9AB7BDF34... -0.811401
2 002E8C0F3F6321C14A72393D1A7CB72049853C81110CAA... -0.359472
3 004DF35A540C1F2CFC12C89E8F0CA622480A4F0A52123C... -0.455774
4 00506BFAD47756108668671B68A5FCCA78046636D92B76... 0.273995
... ... ...
2656 FF97899D2A4EEDBDCD42BA1004D5D696AD069094217867... -0.410498
2657 FF98EA5358D2281496E24195141FA88EB6337C53188146... -0.065290
2658 FFA64E61F9B012016BB7ACCFE2FF2E42D57BB570E94452... 0.798207
2659 FFAA122DB59243500CA1C39E0536AAA151881CBD989683... -0.355223
2660 FFB650E9ECB211EBA618F520B9CDD0F1624C22A71BA73D... -0.008486
[2661 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 2661, vs. num we are initializing: 2661
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 2661
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=16.732342 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.260558 | time=1.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.796650 | time=1.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.690283 | time=2.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.648711 | time=3.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=2.625763 | time=4.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=2.610591 | time=4.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=2.599524 | time=5.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=2.591774 | time=6.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=2.586322 | time=6.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=2.582575 | time=7.5s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(-0.3650, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=2.582471 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.480372 | time=0.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.471387 | time=1.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.470443 | time=2.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.470443 | time=2.1s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.560512 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.092619 | time=142.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.501221 | time=0.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.500428 | time=0.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=070 | loss=0.500402 | time=0.9s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(0.2465, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 2.5826, 1.4704, 0.5004
INFO:birdwatch.scorer:MFGroupScorer_8 Low Diligence MF elapsed time: 10.82 secs (0.18 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:epoch 40 0.10394581407308578
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07881125062704086
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.77 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.65 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.62 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.72 secs (0.01 mins)
INFO:birdwatch.matrix_factorization:epoch 80 0.11184175312519073
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08650964498519897
INFO:birdwatch.matrix_factorization:epoch 100 0.11080179363489151
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08564706891775131
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.18 secs (0.57 mins)
INFO:birdwatch.constants:MFGroupScorer_8: Compute tag thresholds for percentiles elapsed time: 0.60 secs (0.01 mins)
INFO:birdwatch.matrix_factorization:epoch 60 0.10367897152900696
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07856595516204834
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.run_scoring:MFGroupScorer_7 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.run_scoring:MFGroupScorer_7 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_7 run_scorer_parallelizable: Loading data elapsed time: 21.75 secs (0.36 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFGroupScorer_7 set to: 4
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_7. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.matrix_factorization:epoch 80 0.10345962643623352
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07761729508638382
INFO:birdwatch.matrix_factorization:Num epochs: 110
INFO:birdwatch.matrix_factorization:epoch 110 0.1107998788356781
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08561023324728012
INFO:birdwatch.matrix_factorization:Global Intercept: 0.16231831908226013
INFO:birdwatch.scorer:MFCoreScorer First full MF (initializated with stable-initialization) elapsed time: 788.77 secs (13.15 mins)
INFO:birdwatch.scorer:MFCoreScorer First MF/stable init elapsed time: 926.01 secs (15.43 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFCoreScorer
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings after group filter: 1747969
INFO:birdwatch.matrix_factorization:epoch 100 0.11181958019733429
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0865093469619751
INFO:birdwatch.matrix_factorization:epoch 100 0.10343949496746063
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07770797610282898
INFO:birdwatch.matrix_factorization:Num epochs: 101
INFO:birdwatch.scorer:MFGroupScorer_7 Filter input elapsed time: 50.70 secs (0.85 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.matrix_factorization:epoch 101 0.10343949496746063
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07770797610282898
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1557331085205078
INFO:birdwatch.constants:Final round MF elapsed time: 256.45 secs (4.27 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_13 prescoring, about to call diligence with 19811605 final round ratings.
INFO:birdwatch.mf_base_scorer:ratings summary MFGroupScorer_7: 4fd9db736954231a479492812e56c9bfbf3f96fac3fda4cb1184447f7dca0c9b
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 1186217, Num Unique Notes Rated: 79466, Num Unique Raters: 16354
INFO:birdwatch.scorer:MFGroupScorer_7 Prepare ratings elapsed time: 0.61 secs (0.01 mins)
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFGroupScorer_7: 2e4005adbab8cf699eba97425ed6a53ad633fcbdd3e734f38ec03b8c02ff657c
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFGroupScorer_7: bab26056c2c51b2beff057f4e0fe86fa071404051fc10055597e708318a26b55
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFGroupScorer_7: 1b2a6ad46dcfd66350ebeb2e58eebae04708074b0cb986ec945580276c124614
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 16354, Notes: 79466
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 14.927352578461228
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 72.5337532102238
INFO:birdwatch.matrix_factorization:epoch 0 6.320486545562744
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 5.846254825592041
INFO:birdwatch.matrix_factorization:epoch 20 0.3264220356941223
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.24869173765182495
INFO:birdwatch.matrix_factorization:epoch 40 0.15988917648792267
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.12357708066701889
INFO:birdwatch.matrix_factorization:epoch 60 0.12232820689678192
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09069563448429108
INFO:birdwatch.matrix_factorization:epoch 80 0.11620274931192398
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08597643673419952
INFO:birdwatch.matrix_factorization:epoch 100 0.11545437574386597
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0853646770119667
INFO:birdwatch.matrix_factorization:epoch 120 0.11535768210887909
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08523453027009964
INFO:birdwatch.matrix_factorization:epoch 140 0.11534492671489716
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08524022996425629
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.090680 | time=282.4s
INFO:birdwatch.matrix_factorization:Num epochs: 154
INFO:birdwatch.matrix_factorization:epoch 154 0.1153431162238121
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08523191511631012
INFO:birdwatch.matrix_factorization:Global Intercept: 0.17988497018814087
INFO:birdwatch.scorer:MFGroupScorer_7 First MF/stable init elapsed time: 19.79 secs (0.33 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFGroupScorer_7
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 000045A5FA0CF004F68CBF2913506C37D540CF48522D33... 0.631781
1 00022C96980039352E2D04B5E533090FA8BA333F87C5EB... -0.191494
2 0002CA11E7127598E26C281F887129ADA2623C82BBCE8F... -0.410286
3 00043CBC4A8DCE4003E776DCD459F07595B529D190FE6A... -0.579432
4 0006A0E14304DF01B1004C185280BD0429F985BC9BA3BE... -0.037304
... ... ...
103056 FFFE47B0979CC079B88D01EEBB42203E78DD1CC8115671... 0.032142
103057 FFFE4A4B357B94699BF04D58296EE33122C50C0519E3D6... 0.554487
103058 FFFE83C62E7D3E361E85273D9A8BC1D7D206AF97FAA90E... -0.073755
103059 FFFEB27D6E27351D14EB43777F265F694744ABB4B3B7AD... -0.649808
103060 FFFF7E0B3ADB6FC5FB42B0F01FFD24495410C1AE4AC986... 0.059724
[103061 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 103061, vs. num we are initializing: 103061
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 103061
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=18.256786 | time=0.3s
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.68 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.78 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.66 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.76 secs (0.01 mins)
INFO:birdwatch.matrix_factorization:epoch 100 0.11181925237178802
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08650881797075272
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.853110 | time=36.5s
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.56 secs (0.58 mins)
INFO:birdwatch.scorer:MFGroupScorer_7 Compute scored notes elapsed time: 43.10 secs (0.72 mins)
INFO:birdwatch.matrix_factorization:Num epochs: 112
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.matrix_factorization:epoch 112 0.11181748658418655
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.086497962474823
INFO:birdwatch.matrix_factorization:Global Intercept: 0.16396962106227875
INFO:birdwatch.scorer:MFExpansionPlusScorer First full MF (initializated with stable-initialization) elapsed time: 858.38 secs (14.31 mins)
INFO:birdwatch.note_ratings:Total ratings: 1747611 post-tombstones and 358 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 1321793, including 1321790 post-tombstones and 3 pre-tombstones.
INFO:birdwatch.scorer:MFExpansionPlusScorer First MF/stable init elapsed time: 989.60 secs (16.49 mins)
INFO:birdwatch.note_ratings:Total valid ratings: 139212
INFO:birdwatch.scorer:MFGroupScorer_7 Compute valid ratings elapsed time: 2.21 secs (0.04 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_7 Helpfulness scores pre-harassment elapsed time: 0.30 secs (0.00 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 16354
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 56374
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 15545
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 13251
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 1186217
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 1011352
INFO:birdwatch.scorer:MFGroupScorer_7 Filtering by helpfulness score elapsed time: 1.45 secs (0.02 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 654964
1 52803
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 303585
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 602485, Num Unique Notes Rated: 44172, Num Unique Raters: 11720
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 566219
1 36266
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.06019402972688117
INFO:birdwatch.matrix_factorization:Using pos weight: 15.61294325263332 with BCEWithLogitsLoss
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 11720, Notes: 44172
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 13.639522774608348
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 51.406569965870304
INFO:birdwatch.matrix_factorization:epoch 0 3.4724719524383545
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.548095703125
INFO:birdwatch.matrix_factorization:epoch 20 0.6847002506256104
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.37777310609817505
INFO:birdwatch.matrix_factorization:epoch 40 0.4944334626197815
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.31795963644981384
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFExpansionPlusScorer
INFO:birdwatch.matrix_factorization:epoch 60 0.4676464796066284
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3076119124889374
INFO:birdwatch.matrix_factorization:epoch 80 0.463948130607605
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.30611005425453186
INFO:birdwatch.matrix_factorization:epoch 100 0.46341246366500854
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3058334290981293
INFO:birdwatch.matrix_factorization:epoch 120 0.46333253383636475
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.30579888820648193
INFO:birdwatch.matrix_factorization:Num epochs: 125
INFO:birdwatch.matrix_factorization:epoch 125 0.4633316993713379
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3057929277420044
INFO:birdwatch.matrix_factorization:Global Intercept: -0.2689174711704254
INFO:birdwatch.scorer:MFGroupScorer_7 Harassment tag consensus elapsed time: 9.01 secs (0.15 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFGroupScorer_7 Helpfulness scores post-harassment elapsed time: 0.41 secs (0.01 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 16354
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 56374
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 14661
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 12367
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 1186217
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 871392
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 12367, Notes: 79428
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 10.970841516845445
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 70.46106573946794
INFO:birdwatch.matrix_factorization:epoch 0 0.37179672718048096
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3022027611732483
INFO:birdwatch.matrix_factorization:epoch 20 0.11187608540058136
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07947373390197754
INFO:birdwatch.matrix_factorization:epoch 40 0.10989455878734589
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08022681623697281
INFO:birdwatch.matrix_factorization:epoch 60 0.10831080377101898
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07662466168403625
INFO:birdwatch.matrix_factorization:epoch 80 0.10822497308254242
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07705562561750412
INFO:birdwatch.matrix_factorization:epoch 100 0.10818985849618912
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07679852843284607
INFO:birdwatch.matrix_factorization:Num epochs: 102
INFO:birdwatch.matrix_factorization:epoch 102 0.1081920713186264
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07686451077461243
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1820950210094452
INFO:birdwatch.constants:Final round MF elapsed time: 11.30 secs (0.19 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_7 prescoring, about to call diligence with 871392 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 0001C21FD89AC65310D4D74174C0986CDF457DA24DADAB... 0.034742
1 0003E67BB62E658363186A00B13637CF1A58748C4E4ECE... 0.251330
2 0007FA945EF35219D0388D94715189F6231A77263D83B1... 0.295828
3 0009FC5E666A87A24C6E0A4F985A0F8128DE237BBB6D7B... 0.371677
4 000F1687C56AB92D846F2B9BFA71AE16D8A88426754E3B... 0.678841
... ... ...
12362 FFE9CF3FC6CEBF09A2748F1A977245A86BE16A74850C3F... -0.056599
12363 FFEAF4A561DFA90006C71904FB176E3BA20BF932ED1AE6... -0.148612
12364 FFED9EACB703DDAE2E9BBF2B5A7FC35065AB055878F50D... 0.393813
12365 FFEF7AD019F0E1EE28157E1298D5469164E8D7AF2CA91D... -0.270717
12366 FFFBC05DB8408BB532985642C4DE00EC619B062CB60E2E... 0.389263
[12367 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 12367, vs. num we are initializing: 12367
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 12367
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=16.543449 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.515074 | time=2.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.439981 | time=71.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.099560 | time=4.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=3.019695 | time=6.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.991262 | time=8.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=2.976698 | time=10.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=2.967536 | time=12.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=2.961210 | time=14.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=2.956856 | time=16.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=2.953736 | time=18.0s
INFO:birdwatch.matrix_factorization:Num epochs: 112
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=2.951627 | time=20.0s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(0.2657, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=2.951568 | time=0.0s
INFO:birdwatch.matrix_factorization:epoch 112 0.11181716620922089
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08649764209985733
INFO:birdwatch.matrix_factorization:Global Intercept: 0.16396866738796234
INFO:birdwatch.scorer:MFExpansionScorer First full MF (initializated with stable-initialization) elapsed time: 905.44 secs (15.09 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.870546 | time=2.0s
INFO:birdwatch.scorer:MFExpansionScorer First MF/stable init elapsed time: 1040.32 secs (17.34 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.859959 | time=3.9s
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.858937 | time=5.9s
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFExpansionScorer
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.65 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.13 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.82 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.03 secs (0.00 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=115 | loss=1.858854 | time=7.6s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.547362 | time=0.0s
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.67 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.62 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.467697 | time=1.2s
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.74 secs (0.01 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.466692 | time=2.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.466650 | time=3.0s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(1.2692, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 2.9516, 1.8589, 0.4667
INFO:birdwatch.scorer:MFGroupScorer_7 Low Diligence MF elapsed time: 31.51 secs (0.53 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.64 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=3.381900 | time=105.1s
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.78 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.65 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.64 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.76 secs (0.01 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=0.090583 | time=406.9s
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 33.79 secs (0.56 mins)
INFO:birdwatch.scorer:MFCoreScorer Compute scored notes elapsed time: 179.81 secs (3.00 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=3.367405 | time=138.9s
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.10 secs (0.57 mins)
INFO:birdwatch.constants:MFGroupScorer_7: Compute tag thresholds for percentiles elapsed time: 2.00 secs (0.03 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.run_scoring:MFGroupScorer_6 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.run_scoring:MFGroupScorer_6 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_6 run_scorer_parallelizable: Loading data elapsed time: 19.46 secs (0.32 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFGroupScorer_6 set to: 4
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_6. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=3.362330 | time=173.6s
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=3.360109 | time=207.0s
INFO:birdwatch.scorer: Ratings after group filter: 5450867
INFO:birdwatch.scorer:MFGroupScorer_6 Filter input elapsed time: 44.96 secs (0.75 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.mf_base_scorer:ratings summary MFGroupScorer_6: 04b43cd2c96d07ac1e2ab768cf4f0fa515c9e79971a7fe8ae13f1ae30910d433
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.64 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 4659293, Num Unique Notes Rated: 209890, Num Unique Raters: 31333
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.13 secs (0.00 mins)
INFO:birdwatch.scorer:MFGroupScorer_6 Prepare ratings elapsed time: 2.32 secs (0.04 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.77 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.03 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.66 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.73 secs (0.01 mins)
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFGroupScorer_6: e11e3213ef7a5a637ac0d9affe20b03233bc8d429851ed0c55ce5975c5d19f41
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFGroupScorer_6: bab26056c2c51b2beff057f4e0fe86fa071404051fc10055597e708318a26b55
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFGroupScorer_6: 1b2a6ad46dcfd66350ebeb2e58eebae04708074b0cb986ec945580276c124614
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 31333, Notes: 209890
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 22.198737433893946
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 148.70242236619538
INFO:birdwatch.matrix_factorization:epoch 0 6.272146224975586
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 5.815246105194092
INFO:birdwatch.matrix_factorization:epoch 20 0.32835713028907776
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.25326278805732727
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=3.358961 | time=240.8s
INFO:birdwatch.note_ratings:Total ratings: 101910486 post-tombstones and 232250 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 80436103, including 80370184 post-tombstones and 65919 pre-tombstones.
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=0.090571 | time=528.8s
INFO:birdwatch.matrix_factorization:epoch 40 0.13337045907974243
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09825057536363602
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.65 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.13 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.83 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.03 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.67 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.61 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.72 secs (0.01 mins)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.23 secs (0.57 mins)
INFO:birdwatch.scorer:MFExpansionPlusScorer Compute scored notes elapsed time: 206.16 secs (3.44 mins)
INFO:birdwatch.matrix_factorization:epoch 60 0.10895848274230957
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0793888196349144
INFO:birdwatch.matrix_factorization:epoch 80 0.10542146116495132
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07658693194389343
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=3.358307 | time=274.5s
INFO:birdwatch.note_ratings:Total valid ratings: 5578551
INFO:birdwatch.matrix_factorization:epoch 100 0.10493800044059753
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07620479166507721
INFO:birdwatch.scorer:MFCoreScorer Compute valid ratings elapsed time: 146.32 secs (2.44 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFCoreScorer Helpfulness scores pre-harassment elapsed time: 5.60 secs (0.09 mins)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 33.13 secs (0.55 mins)
INFO:birdwatch.matrix_factorization:epoch 120 0.10487690567970276
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07612945884466171
INFO:birdwatch.scorer:MFExpansionScorer Compute scored notes elapsed time: 194.29 secs (3.24 mins)
INFO:birdwatch.matrix_factorization:epoch 140 0.1048690527677536
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07612219452857971
INFO:birdwatch.matrix_factorization:Num epochs: 142
INFO:birdwatch.matrix_factorization:epoch 142 0.10486896336078644
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07612641155719757
INFO:birdwatch.matrix_factorization:Global Intercept: 0.16801659762859344
INFO:birdwatch.scorer:MFGroupScorer_6 First MF/stable init elapsed time: 75.20 secs (1.25 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFGroupScorer_6
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=3.357908 | time=307.9s
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.75 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.62 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.73 secs (0.01 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=3.357659 | time=341.4s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(1.0654, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=3.357652 | time=0.2s
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 33.60 secs (0.56 mins)
INFO:birdwatch.scorer:MFGroupScorer_6 Compute scored notes elapsed time: 45.76 secs (0.76 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.note_ratings:Total ratings: 5449674 post-tombstones and 1193 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 4368026, including 4367957 post-tombstones and 69 pre-tombstones.
INFO:birdwatch.note_ratings:Total valid ratings: 342817
INFO:birdwatch.scorer:MFGroupScorer_6 Compute valid ratings elapsed time: 6.02 secs (0.10 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_6 Helpfulness scores pre-harassment elapsed time: 0.56 secs (0.01 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 31333
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 94982
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 26071
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 24617
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 4659293
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 3817415
INFO:birdwatch.scorer:MFGroupScorer_6 Filtering by helpfulness score elapsed time: 5.94 secs (0.10 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 2477884
1 139275
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 1200256
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 2393398, Num Unique Notes Rated: 126280, Num Unique Raters: 23313
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 2281056
1 112342
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.04693828606859369
INFO:birdwatch.matrix_factorization:Using pos weight: 20.30456997382991 with BCEWithLogitsLoss
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 23313, Notes: 126280
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 18.95310421286031
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 102.6636640501008
INFO:birdwatch.matrix_factorization:epoch 0 3.355055570602417
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.4591138362884521
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=0.090568 | time=649.8s
INFO:birdwatch.matrix_factorization:epoch 20 0.675491213798523
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3443944454193115
INFO:birdwatch.matrix_factorization:epoch 40 0.4422590732574463
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2770985960960388
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.110433 | time=31.2s
INFO:birdwatch.matrix_factorization:epoch 60 0.4074243903160095
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2647395431995392
INFO:birdwatch.matrix_factorization:epoch 80 0.40271952748298645
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.26267001032829285
INFO:birdwatch.matrix_factorization:epoch 100 0.4020889401435852
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2623730003833771
INFO:birdwatch.helpfulness_scores:Unique Raters: 590255
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 574793
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 463424
INFO:birdwatch.matrix_factorization:Num epochs: 119
INFO:birdwatch.matrix_factorization:epoch 119 0.40201109647750854
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.26234227418899536
INFO:birdwatch.matrix_factorization:Global Intercept: -0.2431156486272812
INFO:birdwatch.scorer:MFGroupScorer_6 Harassment tag consensus elapsed time: 35.06 secs (0.58 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFGroupScorer_6 Helpfulness scores post-harassment elapsed time: 1.00 secs (0.02 mins)
INFO:birdwatch.note_ratings:Total ratings: 118075724 post-tombstones and 241616 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 93087196, including 93019731 post-tombstones and 67465 pre-tombstones.
INFO:birdwatch.helpfulness_scores:Unique Raters: 31333
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 94982
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 23379
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 21925
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 4659293
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 2986911
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 21925, Notes: 208928
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 14.296365255016083
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 136.23311288483467
INFO:birdwatch.matrix_factorization:epoch 0 0.38625186681747437
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3190094530582428
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.100222 | time=62.9s
INFO:birdwatch.matrix_factorization:epoch 20 0.10281260311603546
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0706467404961586
INFO:birdwatch.matrix_factorization:epoch 40 0.09916238486766815
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0704370066523552
INFO:birdwatch.note_ratings:Total ratings: 118073534 post-tombstones and 241615 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 93085538, including 93018073 post-tombstones and 67465 pre-tombstones.
INFO:birdwatch.matrix_factorization:epoch 60 0.09785157442092896
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06802797317504883
INFO:birdwatch.matrix_factorization:epoch 80 0.09775014966726303
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06777236610651016
INFO:birdwatch.note_ratings:Total valid ratings: 7102556
INFO:birdwatch.matrix_factorization:epoch 100 0.09773420542478561
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06759101897478104
INFO:birdwatch.scorer:MFExpansionPlusScorer Compute valid ratings elapsed time: 179.64 secs (2.99 mins)
INFO:birdwatch.matrix_factorization:Num epochs: 103
INFO:birdwatch.matrix_factorization:epoch 103 0.0977339893579483
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06772854179143906
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1703343689441681
INFO:birdwatch.constants:Final round MF elapsed time: 41.85 secs (0.70 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_6 prescoring, about to call diligence with 2986911 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.099368 | time=94.9s
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 0002188E5ED3028646C97CBE9ADCD12CB5B8BFAF8819BD... -0.174797
1 0002EEF8B312A7DCBF698391778CD9D0F7ADA652FBFB9E... -0.298513
2 0005983E6E18862483AB372C5B61FEBC1F8A573E7701F9... -0.499946
3 000677AE7F63255B464AD153D315B2E25DB8BF771A379D... 0.469928
4 000760B0C9739248AF3CA6B833A219CC24A4B85C5B4D0D... 0.212109
... ... ...
21920 FFFAA9B8DDDDF9C3CD12F97B13C1658E63F495884418D6... 0.010096
21921 FFFBB8B4BE340D5AAC99E9168F2711EBAB3CE5C9A2567B... -0.090337
21922 FFFC8248F057883916F06F78A0DB7878BFB2C6162434E2... -0.543905
21923 FFFD65E501817C7A5590FADEE2646D40BF1BA5582F6801... -0.327678
21924 FFFFAB2FDBC1968F4CFE97A86D88963D702B636365B6CD... -0.009151
[21925 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 21925, vs. num we are initializing: 21925
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 21925
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=15.637968 | time=0.0s
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 432469
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 100691291
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 77805643
INFO:birdwatch.scorer:MFCoreScorer Filtering by helpfulness score elapsed time: 156.24 secs (2.60 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFExpansionPlusScorer Helpfulness scores pre-harassment elapsed time: 7.83 secs (0.13 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=170 | loss=0.090568 | time=729.9s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.406891 | time=6.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=100 | loss=2.099340 | time=105.6s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.007650 | time=0.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.333924 | time=0.2s
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 48758374
1 3306464
dtype: int64
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.023547 | time=13.6s
INFO:birdwatch.tag_consensus:Number of rows with no tag label 25671715
INFO:birdwatch.note_ratings:Total valid ratings: 7101780
INFO:birdwatch.scorer:MFExpansionScorer Compute valid ratings elapsed time: 170.81 secs (2.85 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.962339 | time=20.4s
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFExpansionScorer Helpfulness scores pre-harassment elapsed time: 6.81 secs (0.11 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.943640 | time=27.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.255059 | time=21.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=2.934534 | time=33.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=2.928887 | time=40.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=2.925113 | time=47.4s
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 51416062, Num Unique Notes Rated: 1002225, Num Unique Raters: 416196
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.254126 | time=42.3s
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 48168519
1 3247543
dtype: int64
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=2.922410 | time=54.2s
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.06316203290714874
INFO:birdwatch.matrix_factorization:Using pos weight: 14.832295984995428 with BCEWithLogitsLoss
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=2.920536 | time=61.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.254087 | time=52.7s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(2.4071, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 3.3577, 2.0993, 0.2541
INFO:birdwatch.scorer:MFGroupScorer_13 Low Diligence MF elapsed time: 525.92 secs (8.77 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=2.919230 | time=67.8s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(0.2776, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=2.919194 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.754996 | time=6.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.743777 | time=13.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.007090 | time=79.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.742854 | time=19.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=100 | loss=1.742818 | time=21.9s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.448196 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.380205 | time=3.9s
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.379360 | time=7.7s
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.60 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.72 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.379324 | time=9.6s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(1.3168, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 2.9192, 1.7428, 0.3793
INFO:birdwatch.scorer:MFGroupScorer_6 Low Diligence MF elapsed time: 102.95 secs (1.72 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.62 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.71 secs (0.01 mins)
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 416196, Notes: 1002225
INFO:birdwatch.matrix_factorization:initializing notes
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 51.30191523859413
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 123.53809743486242
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.61 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.71 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.61 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.60 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.matrix_factorization:epoch 0 3.2293245792388916
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.4528207778930664
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.71 secs (0.01 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 747994
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 712511
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 607970
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 33.97 secs (0.57 mins)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 33.82 secs (0.56 mins)
INFO:birdwatch.constants:MFGroupScorer_6: Compute tag thresholds for percentiles elapsed time: 6.59 secs (0.11 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 747974
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 712504
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 607953
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.run_scoring:MFGroupScorer_5 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.007018 | time=157.4s
INFO:birdwatch.run_scoring:MFGroupScorer_5 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_5 run_scorer_parallelizable: Loading data elapsed time: 19.34 secs (0.32 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFGroupScorer_5 set to: 4
INFO:birdwatch.matrix_factorization:epoch 20 0.7047713994979858
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.42888182401657104
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_5. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 555376
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 116569833
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 89986635
INFO:birdwatch.scorer:MFExpansionPlusScorer Filtering by helpfulness score elapsed time: 182.63 secs (3.04 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.constants:MFGroupScorer_13: Compute tag thresholds for percentiles elapsed time: 60.91 secs (1.02 mins)
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 56923884
1 3891470
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 29101252
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 555359
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 116567689
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 89985012
INFO:birdwatch.scorer:MFExpansionScorer Filtering by helpfulness score elapsed time: 184.20 secs (3.07 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.reputation_matrix_factorization:epoch=080 | loss=0.007014 | time=208.0s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(0.6817, requires_grad=True)
INFO:birdwatch.helpfulness_model:Helpfulness reputation loss: 0.0150, 0.0906, 0.0070
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/reputation_scorer.py, in _prescore_notes_and_users, at line 135: noteStats = noteStats.merge(noteStatusHistory[[c.noteIdKey]].drop_duplicates(), how="outer")
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.reputation_scorer:Reputation prescoring: returning these columns:
noteStats: Index(['noteId', 'internalNoteIntercept', 'internalNoteFactor1',
'lowDiligenceNoteInterceptRound2'],
dtype='object')
raterStats: Index(['raterParticipantId', 'internalRaterReputation',
'internalRaterIntercept', 'internalRaterFactor1',
'lowDiligenceRaterInterceptRound2'],
dtype='object')
INFO:birdwatch.scorer: Ratings after group filter: 555225
INFO:birdwatch.run_scoring:MFGroupScorer_4 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.scorer:MFGroupScorer_5 Filter input elapsed time: 43.67 secs (0.73 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.mf_base_scorer:ratings summary MFGroupScorer_5: 1c9ed1ed6010515673b56328cd8b3bc9b0a40557890e65105bf097ca26e95211
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 237917, Num Unique Notes Rated: 22188, Num Unique Raters: 3852
INFO:birdwatch.scorer:MFGroupScorer_5 Prepare ratings elapsed time: 0.16 secs (0.00 mins)
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFGroupScorer_5: c51cdee3a36b17132270a37efb2fdfee8481384380b6c2278880f1866213e291
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFGroupScorer_5: bab26056c2c51b2beff057f4e0fe86fa071404051fc10055597e708318a26b55
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFGroupScorer_5: 1b2a6ad46dcfd66350ebeb2e58eebae04708074b0cb986ec945580276c124614
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 3852, Notes: 22188
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 10.72277807824049
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 61.76453790238837
INFO:birdwatch.matrix_factorization:epoch 0 6.505688190460205
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.011424541473389
INFO:birdwatch.matrix_factorization:epoch 20 0.3373934328556061
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2626161575317383
INFO:birdwatch.matrix_factorization:epoch 40 0.13293388485908508
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09004734456539154
INFO:birdwatch.matrix_factorization:epoch 60 0.10200294852256775
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06733014434576035
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 56922595
1 3891288
dtype: int64
INFO:birdwatch.matrix_factorization:epoch 80 0.0965874046087265
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0627824142575264
INFO:birdwatch.matrix_factorization:epoch 100 0.09589532017707825
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0619732066988945
INFO:birdwatch.matrix_factorization:epoch 120 0.09580479562282562
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0619276687502861
INFO:birdwatch.matrix_factorization:epoch 140 0.09579093754291534
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06191651150584221
INFO:birdwatch.matrix_factorization:Num epochs: 146
INFO:birdwatch.matrix_factorization:epoch 146 0.09579023718833923
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06191713735461235
INFO:birdwatch.matrix_factorization:Global Intercept: 0.18588478863239288
INFO:birdwatch.scorer:MFGroupScorer_5 First MF/stable init elapsed time: 4.38 secs (0.07 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFGroupScorer_5
INFO:birdwatch.tag_consensus:Number of rows with no tag label 29101100
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.72 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.65 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.64 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.74 secs (0.01 mins)
INFO:birdwatch.run_scoring:MFGroupScorer_4 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_4 run_scorer_parallelizable: Loading data elapsed time: 19.71 secs (0.33 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFGroupScorer_4 set to: 4
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 60117880, Num Unique Notes Rated: 1096849, Num Unique Raters: 532307
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_4. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.matrix_factorization:epoch 40 0.4833068251609802
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3419259488582611
INFO:birdwatch.run_scoring:MFGroupScorer_3 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 56285750
1 3832130
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.06374359841032319
INFO:birdwatch.matrix_factorization:Using pos weight: 14.687849838079604 with BCEWithLogitsLoss
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 33.65 secs (0.56 mins)
INFO:birdwatch.scorer:MFGroupScorer_5 Compute scored notes elapsed time: 40.79 secs (0.68 mins)
INFO:birdwatch.run_scoring:MFGroupScorer_3 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_3 run_scorer_parallelizable: Loading data elapsed time: 19.64 secs (0.33 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFGroupScorer_3 set to: 4
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.note_ratings:Total ratings: 555087 post-tombstones and 138 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 441165, including 441165 post-tombstones and 0 pre-tombstones.
INFO:birdwatch.note_ratings:Total valid ratings: 26567
INFO:birdwatch.scorer:MFGroupScorer_5 Compute valid ratings elapsed time: 0.99 secs (0.02 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_5 Helpfulness scores pre-harassment elapsed time: 0.12 secs (0.00 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 3852
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 16995
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 3650
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 3182
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 237917
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 211573
INFO:birdwatch.scorer:MFGroupScorer_5 Filtering by helpfulness score elapsed time: 0.27 secs (0.00 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 140054
1 11645
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 59874
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 118264, Num Unique Notes Rated: 11422, Num Unique Raters: 2729
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 112002
1 6262
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.0529493336941081
INFO:birdwatch.matrix_factorization:Using pos weight: 17.88597892047269 with BCEWithLogitsLoss
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 2729, Notes: 11422
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 10.354053580808966
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 43.33602052033712
INFO:birdwatch.matrix_factorization:epoch 0 3.3255653381347656
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.4221495389938354
INFO:birdwatch.matrix_factorization:epoch 20 0.6385119557380676
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2950723469257355
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 60116394, Num Unique Notes Rated: 1096847, Num Unique Raters: 532290
INFO:birdwatch.matrix_factorization:epoch 40 0.4211670756340027
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.23981989920139313
INFO:birdwatch.matrix_factorization:epoch 60 0.3886503577232361
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.22783590853214264
INFO:birdwatch.matrix_factorization:epoch 80 0.38440507650375366
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.22651779651641846
INFO:birdwatch.matrix_factorization:epoch 100 0.3837811350822449
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.22617749869823456
INFO:birdwatch.matrix_factorization:Num epochs: 113
INFO:birdwatch.matrix_factorization:epoch 113 0.3837122321128845
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.22612765431404114
INFO:birdwatch.matrix_factorization:Global Intercept: -0.2777239680290222
INFO:birdwatch.scorer:MFGroupScorer_5 Harassment tag consensus elapsed time: 1.87 secs (0.03 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFGroupScorer_5 Helpfulness scores post-harassment elapsed time: 0.14 secs (0.00 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 3852
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 16995
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 3458
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 2990
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 237917
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 183951
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 2990, Notes: 22175
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 8.295422773393462
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 61.52207357859532
INFO:birdwatch.matrix_factorization:epoch 0 0.38200655579566956
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.30709701776504517
INFO:birdwatch.matrix_factorization:epoch 20 0.09668667614459991
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05983196198940277
INFO:birdwatch.matrix_factorization:epoch 40 0.09239980578422546
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05907268077135086
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_3. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.matrix_factorization:epoch 60 0.09099796414375305
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.056515373289585114
INFO:birdwatch.matrix_factorization:epoch 80 0.09087927639484406
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.056339509785175323
INFO:birdwatch.matrix_factorization:Num epochs: 81
INFO:birdwatch.matrix_factorization:epoch 81 0.09087927639484406
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.056339509785175323
INFO:birdwatch.matrix_factorization:Global Intercept: 0.18524184823036194
INFO:birdwatch.constants:Final round MF elapsed time: 2.11 secs (0.04 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_5 prescoring, about to call diligence with 183951 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 001670E335A2559879EA4C5497E9469BD163D949F32CFB... 0.694623
1 003DAEE4C05D42B92583AD7BB4E5FC40051E7EDB8A34F4... -0.533865
2 003EF532CDFCF35BC31EA059E3C981E2866B6FE12DFFE3... -0.446522
3 0078B6E44FB3B19530E03D5FF363823AE29AEF431E16A4... -0.326030
4 007931FC488902DD0A8CB7AA24BFAB189E614C73CCAB9E... -0.428151
... ... ...
2985 FF9AD1E27202E08F5B4E371E2F9CDEFD12B04407DD00E4... -0.146677
2986 FFAC3C1B41112324A7D9677419DF2C179D47327EFC3458... -0.230635
2987 FFB5DC98D9D19D482617D7D9F61B91DFB74F2B5588EADC... 0.316966
2988 FFBF66FB8FE4AEF510F7CD3F18B24F5FCCD83CFBFB4F0E... -0.668074
2989 FFC5FEB6111C3D7EEE8617D8CDE530946BE44871355D9D... 0.003866
[2990 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 2990, vs. num we are initializing: 2990
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 2990
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=16.861629 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.271580 | time=0.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.814015 | time=1.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.722945 | time=1.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.689590 | time=2.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=2.670991 | time=2.6s
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 56284448
1 3831946
dtype: int64
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=2.659049 | time=3.1s
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=2.650878 | time=3.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=2.645420 | time=4.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=2.641486 | time=4.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=2.638443 | time=5.1s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(-0.1347, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=2.638358 | time=0.0s
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.560054 | time=0.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.550052 | time=1.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.549247 | time=1.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=100 | loss=1.549219 | time=1.8s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.552185 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.488989 | time=0.3s
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.06374211334099647
INFO:birdwatch.matrix_factorization:Using pos weight: 14.688215334976015 with BCEWithLogitsLoss
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.488173 | time=0.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.488139 | time=0.7s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(0.6464, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 2.6384, 1.5492, 0.4881
INFO:birdwatch.scorer:MFGroupScorer_5 Low Diligence MF elapsed time: 7.85 secs (0.13 mins)
INFO:birdwatch.scorer: Ratings after group filter: 1911572
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_4 Filter input elapsed time: 45.04 secs (0.75 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.58 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.mf_base_scorer:ratings summary MFGroupScorer_4: 6dae5f774d3e567d9aa37542a636926baa18a742be1611d99f276911efd08db8
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.68 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.61 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 1507143, Num Unique Notes Rated: 60014, Num Unique Raters: 14399
INFO:birdwatch.scorer:MFGroupScorer_4 Prepare ratings elapsed time: 0.73 secs (0.01 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.58 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.72 secs (0.01 mins)
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFGroupScorer_4: 0b363ba441451b25ef409f6453b14bff88477c94a8a8efd52070b32487252ef2
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFGroupScorer_4: bab26056c2c51b2beff057f4e0fe86fa071404051fc10055597e708318a26b55
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFGroupScorer_4: 1b2a6ad46dcfd66350ebeb2e58eebae04708074b0cb986ec945580276c124614
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 14399, Notes: 60014
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 25.113190255607027
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 104.66997708174179
INFO:birdwatch.matrix_factorization:epoch 0 6.698787689208984
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.223075866699219
INFO:birdwatch.matrix_factorization:epoch 20 0.31589454412460327
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.25655877590179443
INFO:birdwatch.matrix_factorization:epoch 40 0.13759097456932068
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10495001077651978
INFO:birdwatch.matrix_factorization:epoch 60 0.10322079062461853
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07258222997188568
INFO:birdwatch.matrix_factorization:epoch 80 0.09771555662155151
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06851274520158768
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.matrix_factorization:epoch 100 0.09711906313896179
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06810428202152252
INFO:birdwatch.matrix_factorization:epoch 120 0.09703299403190613
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06803431361913681
INFO:birdwatch.scorer: Ratings after group filter: 6154771
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 532307, Notes: 1096849
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:epoch 140 0.0970223918557167
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06801554560661316
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 54.80962283778351
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 112.93836075798365
INFO:birdwatch.scorer:MFGroupScorer_3 Filter input elapsed time: 45.92 secs (0.77 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.matrix_factorization:Num epochs: 145
INFO:birdwatch.matrix_factorization:epoch 145 0.09702189266681671
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06801630556583405
INFO:birdwatch.matrix_factorization:Global Intercept: 0.16772010922431946
INFO:birdwatch.scorer:MFGroupScorer_4 First MF/stable init elapsed time: 24.91 secs (0.42 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFGroupScorer_4
INFO:birdwatch.matrix_factorization:epoch 60 0.44839948415756226
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3275475800037384
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.matrix_factorization:epoch 0 3.2308831214904785
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.471374273300171
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.65 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.mf_base_scorer:ratings summary MFGroupScorer_3: 219a2d389f6536ef18f19193931800b0694640cb02c48c93fd879e7a8fda6ca0
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.70 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.59 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 33.82 secs (0.56 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.70 secs (0.01 mins)
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 5436988, Num Unique Notes Rated: 168222, Num Unique Raters: 50733
INFO:birdwatch.scorer:MFGroupScorer_3 Prepare ratings elapsed time: 2.67 secs (0.04 mins)
INFO:birdwatch.constants:MFGroupScorer_5: Compute tag thresholds for percentiles elapsed time: 0.52 secs (0.01 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.run_scoring:MFGroupScorer_2 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFGroupScorer_3: cddd5a08fb6bb9838d0866f5839d663c6701abecf9e154d89a98b491dc08895a
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFGroupScorer_3: bab26056c2c51b2beff057f4e0fe86fa071404051fc10055597e708318a26b55
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFGroupScorer_3: 1b2a6ad46dcfd66350ebeb2e58eebae04708074b0cb986ec945580276c124614
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 50733, Notes: 168222
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 32.32031482208035
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 107.16866733684189
INFO:birdwatch.matrix_factorization:epoch 0 6.160441875457764
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 5.707648277282715
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 532290, Notes: 1096847
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 54.80836798568989
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 112.93917601307558
INFO:birdwatch.run_scoring:MFGroupScorer_2 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_2 run_scorer_parallelizable: Loading data elapsed time: 19.34 secs (0.32 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFGroupScorer_2 set to: 4
INFO:birdwatch.matrix_factorization:epoch 20 0.35091888904571533
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.28343868255615234
INFO:birdwatch.matrix_factorization:epoch 0 3.230905532836914
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.4713935852050781
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_2. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.84 secs (0.58 mins)
INFO:birdwatch.scorer:MFGroupScorer_4 Compute scored notes elapsed time: 43.27 secs (0.72 mins)
INFO:birdwatch.matrix_factorization:epoch 40 0.14208878576755524
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10886015743017197
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.note_ratings:Total ratings: 1911260 post-tombstones and 312 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 1578669, including 1578669 post-tombstones and 0 pre-tombstones.
INFO:birdwatch.note_ratings:Total valid ratings: 108931
INFO:birdwatch.scorer:MFGroupScorer_4 Compute valid ratings elapsed time: 1.73 secs (0.03 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_4 Helpfulness scores pre-harassment elapsed time: 0.28 secs (0.00 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 14399
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 38413
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 12009
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 11218
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 1507143
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 1252671
INFO:birdwatch.scorer:MFGroupScorer_4 Filtering by helpfulness score elapsed time: 1.91 secs (0.03 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 764650
1 79689
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 408332
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 779449, Num Unique Notes Rated: 37421, Num Unique Raters: 10540
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 710026
1 69423
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.08906676382932045
INFO:birdwatch.matrix_factorization:Using pos weight: 10.227532662086054 with BCEWithLogitsLoss
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 10540, Notes: 37421
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 20.82918682023463
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 73.95151802656547
INFO:birdwatch.matrix_factorization:epoch 0 3.406766653060913
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.5144782066345215
INFO:birdwatch.matrix_factorization:epoch 20 0.670211911201477
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.356147825717926
INFO:birdwatch.matrix_factorization:epoch 40 0.4503651261329651
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2893131375312805
INFO:birdwatch.matrix_factorization:epoch 60 0.4171738922595978
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.277433842420578
INFO:birdwatch.matrix_factorization:epoch 80 0.4127207398414612
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2751638889312744
INFO:birdwatch.matrix_factorization:epoch 60 0.11586557328701019
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08810189366340637
INFO:birdwatch.matrix_factorization:epoch 100 0.4121388792991638
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.27491995692253113
INFO:birdwatch.matrix_factorization:epoch 120 0.41206347942352295
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2749044597148895
INFO:birdwatch.matrix_factorization:Num epochs: 132
INFO:birdwatch.matrix_factorization:epoch 132 0.4120563864707947
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2748928964138031
INFO:birdwatch.matrix_factorization:Global Intercept: -0.20987597107887268
INFO:birdwatch.scorer:MFGroupScorer_4 Harassment tag consensus elapsed time: 13.01 secs (0.22 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFGroupScorer_4 Helpfulness scores post-harassment elapsed time: 0.38 secs (0.01 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 14399
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 38413
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 10669
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 9878
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 1507143
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 966156
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 9878, Notes: 59954
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 16.114954798678987
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 97.80886819194168
INFO:birdwatch.matrix_factorization:epoch 0 0.38886088132858276
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.32036033272743225
INFO:birdwatch.matrix_factorization:epoch 20 0.09786438941955566
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0646565780043602
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.matrix_factorization:epoch 40 0.0945834070444107
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06539532542228699
INFO:birdwatch.matrix_factorization:epoch 80 0.11031527817249298
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08270066231489182
INFO:birdwatch.matrix_factorization:epoch 60 0.09400955587625504
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06439482420682907
INFO:birdwatch.matrix_factorization:epoch 80 0.4420861601829529
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3238765597343445
INFO:birdwatch.scorer: Ratings after group filter: 1485387
INFO:birdwatch.matrix_factorization:epoch 80 0.09385792165994644
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06359776109457016
INFO:birdwatch.scorer:MFGroupScorer_2 Filter input elapsed time: 45.10 secs (0.75 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.matrix_factorization:epoch 100 0.09385128319263458
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06359480321407318
INFO:birdwatch.matrix_factorization:Num epochs: 101
INFO:birdwatch.matrix_factorization:epoch 101 0.09385128319263458
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06359480321407318
INFO:birdwatch.matrix_factorization:Global Intercept: 0.16988325119018555
INFO:birdwatch.constants:Final round MF elapsed time: 13.41 secs (0.22 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_4 prescoring, about to call diligence with 966156 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 0011AB5425173F62E5D4A1787E34ED324BDD5807D4C3B8... -0.559426
1 001C8D32D1F35CAC07983265BA3F769C6976F5A71141E4... 0.409342
2 0026D52237BA91FDF564C99A30B594C53E0E5E7CF76F5C... 0.577273
3 003B5BBD63338E6ECB7DA6F16AC010576B506676849D76... 0.316241
4 003CE80F068D189A05BBA9748FCA578819680378FBDEB7... -0.450130
... ... ...
9873 FFCB30F2118337303F4EBFD59C8A33E85A2C7276BD67C1... -0.457454
9874 FFD3B8B9E935D1D393558464F9172AF81C6CF5E76C31EA... 0.380038
9875 FFDCC6136CBDCE1394D680A912CB4203DE5D035006979B... 0.509950
9876 FFEC392A6B742286C786DE71BB4102B6804FF360A00B3A... 0.175354
9877 FFF89590FF300D0348631F2F16AA908F663A888A3F82E0... -0.278656
[9878 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 9878, vs. num we are initializing: 9878
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 9878
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=19.016602 | time=0.0s
INFO:birdwatch.mf_base_scorer:ratings summary MFGroupScorer_2: 69a9fee793c8a7edda8b8d4d229ca3a91f2881b198ec553cf1932d65b626cec8
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 890938, Num Unique Notes Rated: 68353, Num Unique Raters: 9775
INFO:birdwatch.scorer:MFGroupScorer_2 Prepare ratings elapsed time: 0.48 secs (0.01 mins)
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFGroupScorer_2: f94e1c2eb904b65e6015e37c6de0eeb390703f154f7f6aea964abc8cbb1867cc
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFGroupScorer_2: bab26056c2c51b2beff057f4e0fe86fa071404051fc10055597e708318a26b55
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.621771 | time=2.3s
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFGroupScorer_2: 1b2a6ad46dcfd66350ebeb2e58eebae04708074b0cb986ec945580276c124614
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 9775, Notes: 68353
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 13.034365719134493
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 91.14455242966751
INFO:birdwatch.matrix_factorization:epoch 0 6.517404079437256
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.035797119140625
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.150838 | time=4.7s
INFO:birdwatch.matrix_factorization:epoch 20 0.37099361419677734
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.27346354722976685
INFO:birdwatch.matrix_factorization:epoch 100 0.10985220968723297
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08248025923967361
INFO:birdwatch.matrix_factorization:epoch 40 0.15487666428089142
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11730708181858063
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=3.080948 | time=7.0s
INFO:birdwatch.matrix_factorization:epoch 60 0.11793714761734009
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08650939911603928
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=3.061856 | time=9.3s
INFO:birdwatch.matrix_factorization:epoch 20 0.7068929672241211
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.4391211271286011
INFO:birdwatch.matrix_factorization:epoch 80 0.11242350935935974
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0823739767074585
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=3.053419 | time=11.7s
INFO:birdwatch.matrix_factorization:epoch 100 0.11172764748334885
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0817120373249054
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=3.048802 | time=14.1s
INFO:birdwatch.matrix_factorization:epoch 120 0.111640065908432
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0816383808851242
INFO:birdwatch.matrix_factorization:epoch 140 0.1116287037730217
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08163300156593323
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=3.045836 | time=16.5s
INFO:birdwatch.matrix_factorization:Num epochs: 147
INFO:birdwatch.matrix_factorization:epoch 147 0.11162795126438141
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08163106441497803
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1721932739019394
INFO:birdwatch.scorer:MFGroupScorer_2 First MF/stable init elapsed time: 14.32 secs (0.24 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFGroupScorer_2
INFO:birdwatch.matrix_factorization:epoch 120 0.10978099703788757
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08239739388227463
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=3.043804 | time=18.8s
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=3.042342 | time=21.4s
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.65 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.79 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.59 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=3.041303 | time=23.9s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(0.7280, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=3.041274 | time=0.0s
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.74 secs (0.01 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.912494 | time=2.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.901581 | time=4.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.900838 | time=6.7s
INFO:birdwatch.matrix_factorization:epoch 140 0.109770767390728
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08237619698047638
INFO:birdwatch.reputation_matrix_factorization:epoch=100 | loss=1.900815 | time=7.4s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.454399 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.380901 | time=1.3s
INFO:birdwatch.matrix_factorization:Num epochs: 146
INFO:birdwatch.matrix_factorization:epoch 146 0.10977018624544144
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08237743377685547
INFO:birdwatch.matrix_factorization:Global Intercept: 0.16864676773548126
INFO:birdwatch.scorer:MFGroupScorer_3 First MF/stable init elapsed time: 94.30 secs (1.57 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFGroupScorer_3
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.380001 | time=2.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.379962 | time=3.3s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(1.8078, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 3.0413, 1.9008, 0.3800
INFO:birdwatch.scorer:MFGroupScorer_4 Low Diligence MF elapsed time: 35.72 secs (0.60 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.59 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:epoch 20 0.7068942785263062
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.43912115693092346
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.72 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.60 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.78 secs (0.01 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.62 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.68 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.65 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.56 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.71 secs (0.01 mins)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 33.58 secs (0.56 mins)
INFO:birdwatch.scorer:MFGroupScorer_2 Compute scored notes elapsed time: 41.63 secs (0.69 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.note_ratings:Total ratings: 1484989 post-tombstones and 398 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 1174087, including 1174087 post-tombstones and 0 pre-tombstones.
INFO:birdwatch.note_ratings:Total valid ratings: 89077
INFO:birdwatch.scorer:MFGroupScorer_2 Compute valid ratings elapsed time: 1.37 secs (0.02 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_2 Helpfulness scores pre-harassment elapsed time: 0.23 secs (0.00 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 9775
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 42202
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 9216
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 8003
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 890938
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 776161
INFO:birdwatch.scorer:MFGroupScorer_2 Filtering by helpfulness score elapsed time: 1.06 secs (0.02 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 490341
1 24919
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 260901
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 417285, Num Unique Notes Rated: 33587, Num Unique Raters: 7081
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 402661
1 14624
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.035045592340966006
INFO:birdwatch.matrix_factorization:Using pos weight: 27.53425875273523 with BCEWithLogitsLoss
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 7081, Notes: 33587
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 12.424003334623515
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 58.93023584239514
INFO:birdwatch.matrix_factorization:epoch 0 3.1215243339538574
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.212156057357788
INFO:birdwatch.matrix_factorization:epoch 20 0.6161671280860901
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2901526689529419
INFO:birdwatch.matrix_factorization:epoch 40 0.381754070520401
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2078319489955902
INFO:birdwatch.matrix_factorization:epoch 60 0.3446827828884125
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1943131685256958
INFO:birdwatch.matrix_factorization:epoch 80 0.3381313383579254
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.19340667128562927
INFO:birdwatch.matrix_factorization:epoch 100 0.3370509147644043
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.19298066198825836
INFO:birdwatch.matrix_factorization:Num epochs: 115
INFO:birdwatch.matrix_factorization:epoch 115 0.33685457706451416
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.19294053316116333
INFO:birdwatch.matrix_factorization:Global Intercept: -0.2822979986667633
INFO:birdwatch.scorer:MFGroupScorer_2 Harassment tag consensus elapsed time: 5.99 secs (0.10 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFGroupScorer_2 Helpfulness scores post-harassment elapsed time: 0.27 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:epoch 100 0.44117575883865356
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.32340681552886963
INFO:birdwatch.helpfulness_scores:Unique Raters: 9775
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 42202
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 8753
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 7540
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 890938
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 658930
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 7540, Notes: 68286
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 9.649562135723281
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 87.39124668435014
INFO:birdwatch.matrix_factorization:epoch 0 0.3927237391471863
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3238324820995331
INFO:birdwatch.matrix_factorization:epoch 20 0.10900013148784637
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07585250586271286
INFO:birdwatch.matrix_factorization:epoch 40 0.10410565137863159
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07415442913770676
INFO:birdwatch.matrix_factorization:epoch 60 0.1026550680398941
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07165952771902084
INFO:birdwatch.matrix_factorization:epoch 80 0.10253122448921204
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07152654230594635
INFO:birdwatch.matrix_factorization:Num epochs: 95
INFO:birdwatch.matrix_factorization:epoch 95 0.10250472277402878
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07144927978515625
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1710907518863678
INFO:birdwatch.constants:Final round MF elapsed time: 8.21 secs (0.14 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_2 prescoring, about to call diligence with 658930 final round ratings.
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 33.98 secs (0.57 mins)
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 00007F6B0991C1CA1DF283A7615A79999117CAC8C962A5... 0.136753
1 0000FDC49B38F4C994CAA60961F88FB421B03D0D43F499... -0.203846
2 001BE45AE64F526CFC3CC1B706DE3D812A6063976CA65D... -0.439461
3 0020A81474D2B3E0479ED2BB0A5577F54852D9381A5DD3... -0.151953
4 00264FCCA9C6517FBBA613AA7F64C431078456BB521359... -0.625927
... ... ...
7535 FFE33E8172BAD7A1575F60FCAB8012D6BE7798D2C8A26D... -0.325974
7536 FFEC26DAD31FB175031B1A676DACDDFE983F60DAFA8985... -0.619723
7537 FFF8F9C2C8D0118227B1D6295B8CF7BA535B2A44B2EDEF... -0.543683
7538 FFFF33553CB8A72FF1CB6FB663CED93F292F0D2C161852... -0.398262
7539 FFFF82FC0D34E74125C0E5C894E335531C58342FB7C039... 0.545447
[7540 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 7540, vs. num we are initializing: 7540
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 7540
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=17.619812 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.479037 | time=1.6s
INFO:birdwatch.constants:MFGroupScorer_4: Compute tag thresholds for percentiles elapsed time: 2.16 secs (0.04 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.034774 | time=3.2s
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.28 secs (0.57 mins)
INFO:birdwatch.scorer:MFGroupScorer_3 Compute scored notes elapsed time: 46.41 secs (0.77 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.946562 | time=4.7s
INFO:birdwatch.run_scoring:MFGroupScorer_1 run_scorer_parallelizable just started in parallel: loading data from shared memory.
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.915432 | time=6.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=2.899280 | time=8.3s
INFO:birdwatch.note_ratings:Total ratings: 6153608 post-tombstones and 1163 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 4564479, including 4564467 post-tombstones and 12 pre-tombstones.
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=2.888865 | time=10.4s
INFO:birdwatch.note_ratings:Total valid ratings: 484421
INFO:birdwatch.scorer:MFGroupScorer_3 Compute valid ratings elapsed time: 7.58 secs (0.13 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_3 Helpfulness scores pre-harassment elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=2.881603 | time=12.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=2.876575 | time=14.0s
INFO:birdwatch.matrix_factorization:epoch 40 0.48588138818740845
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3469192087650299
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=2.872807 | time=15.7s
INFO:birdwatch.helpfulness_scores:Unique Raters: 50733
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 101066
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 43754
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=2.870011 | time=17.3s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(0.1921, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=2.869933 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.731862 | time=1.6s
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 40037
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 5436988
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 4441479
INFO:birdwatch.scorer:MFGroupScorer_3 Filtering by helpfulness score elapsed time: 7.30 secs (0.12 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 2973534
1 146458
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 1321487
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.720853 | time=3.2s
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 2946951, Num Unique Notes Rated: 106653, Num Unique Raters: 37981
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 2819844
1 127107
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.04313169781241697
INFO:birdwatch.matrix_factorization:Using pos weight: 22.184804928131417 with BCEWithLogitsLoss
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.719774 | time=4.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=100 | loss=1.719740 | time=5.3s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.507944 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.437715 | time=0.9s
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 37981, Notes: 106653
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 27.63120587325251
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 77.59013717385008
INFO:birdwatch.matrix_factorization:epoch 0 3.460616111755371
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.5580065250396729
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.436819 | time=1.8s
INFO:birdwatch.run_scoring:MFGroupScorer_1 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_1 run_scorer_parallelizable: Loading data elapsed time: 19.94 secs (0.33 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFGroupScorer_1 set to: 4
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.436783 | time=2.3s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(1.1650, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 2.8700, 1.7197, 0.4368
INFO:birdwatch.scorer:MFGroupScorer_2 Low Diligence MF elapsed time: 25.66 secs (0.43 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_1. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.62 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.84 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:epoch 20 0.6890877485275269
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3774817883968353
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.66 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.58 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.75 secs (0.01 mins)
INFO:birdwatch.matrix_factorization:epoch 40 0.4575643539428711
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.29412174224853516
INFO:birdwatch.matrix_factorization:epoch 60 0.42446714639663696
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.28245243430137634
INFO:birdwatch.matrix_factorization:epoch 40 0.48587948083877563
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.34691593050956726
INFO:birdwatch.matrix_factorization:epoch 80 0.42003875970840454
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.28034573793411255
INFO:birdwatch.matrix_factorization:epoch 100 0.4193997383117676
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2799588739871979
INFO:birdwatch.matrix_factorization:Num epochs: 106
INFO:birdwatch.matrix_factorization:epoch 106 0.4193531274795532
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.27994611859321594
INFO:birdwatch.matrix_factorization:Global Intercept: -0.25034454464912415
INFO:birdwatch.scorer:MFGroupScorer_3 Harassment tag consensus elapsed time: 40.84 secs (0.68 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFGroupScorer_3 Helpfulness scores post-harassment elapsed time: 1.06 secs (0.02 mins)
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.matrix_factorization:epoch 120 0.4410301744937897
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.32334429025650024
INFO:birdwatch.helpfulness_scores:Unique Raters: 50733
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 101066
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 38195
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 33.95 secs (0.57 mins)
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 34478
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 5436988
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 3234204
INFO:birdwatch.constants:MFGroupScorer_2: Compute tag thresholds for percentiles elapsed time: 1.37 secs (0.02 mins)
INFO:birdwatch.scorer: Ratings after group filter: 5867441
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 34478, Notes: 167503
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 19.308334776093563
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 93.80486107082777
INFO:birdwatch.scorer:MFGroupScorer_1 Filter input elapsed time: 45.77 secs (0.76 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.run_scoring:MFGroupScorer_14 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.matrix_factorization:epoch 0 0.37275373935699463
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.30735349655151367
INFO:birdwatch.mf_base_scorer:ratings summary MFGroupScorer_1: ab2239f3406a2b93387dec9cea079ee7e658b7e9e8589566e27de20cd4346798
INFO:birdwatch.matrix_factorization:epoch 20 0.10647225379943848
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0762961283326149
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 5200616, Num Unique Notes Rated: 142070, Num Unique Raters: 54292
INFO:birdwatch.scorer:MFGroupScorer_1 Prepare ratings elapsed time: 2.79 secs (0.05 mins)
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFGroupScorer_1: baaa79a6aa23f09d4f361fd35751ca6c804bb0b4eb071f614db463656ea4fdc3
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFGroupScorer_1: bab26056c2c51b2beff057f4e0fe86fa071404051fc10055597e708318a26b55
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFGroupScorer_1: 1b2a6ad46dcfd66350ebeb2e58eebae04708074b0cb986ec945580276c124614
INFO:birdwatch.matrix_factorization:epoch 40 0.10482681542634964
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07767274230718613
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 54292, Notes: 142070
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 36.60601112127824
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 95.78972961025565
INFO:birdwatch.run_scoring:MFGroupScorer_14 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_14 run_scorer_parallelizable: Loading data elapsed time: 19.31 secs (0.32 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFGroupScorer_14 set to: 4
INFO:birdwatch.matrix_factorization:epoch 0 6.311474323272705
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 5.859148025512695
INFO:birdwatch.matrix_factorization:epoch 60 0.10351786762475967
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07491569966077805
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_14. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.matrix_factorization:epoch 60 0.4542800784111023
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.33377817273139954
INFO:birdwatch.matrix_factorization:epoch 80 0.10346588492393494
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07493498921394348
INFO:birdwatch.matrix_factorization:epoch 20 0.3422960638999939
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.28132298588752747
INFO:birdwatch.matrix_factorization:epoch 100 0.10345213115215302
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07470148801803589
INFO:birdwatch.matrix_factorization:Num epochs: 103
INFO:birdwatch.matrix_factorization:epoch 103 0.1034514307975769
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07485070824623108
INFO:birdwatch.matrix_factorization:Global Intercept: 0.17145097255706787
INFO:birdwatch.constants:Final round MF elapsed time: 48.81 secs (0.81 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_3 prescoring, about to call diligence with 3234204 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 000011269AD6F327AED0F4086A732B4052F9D28E8791E1... -0.100065
1 00005300B9017670433392BF6767238D54E058EC25D5C5... -0.273228
2 0006F1E9A72BC327122346B1EC672566F8DE4304BC7813... -0.178951
3 0008CE6A2932D0D88C4965BDA83BD8CE906EC91A951066... -0.600315
4 00099B57E40688AFECCE8A3415A2AC45FD8944C33ACB9C... -0.493003
... ... ...
34473 FFFBB4B078CA1D3C3E23B986FA1A0BD4B3081E70C2B274... -0.750079
34474 FFFC156EAADE44C6CB99B0EB02DB63AAA7DC330AFC0E4B... -0.632675
34475 FFFC37B8B75A047FC218F52FF5F03C876A906BD09B0F34... 0.290217
34476 FFFD98FC04D3E1615C8BF2617DA7EA6BAEDCED7C9BFDC0... -0.251977
34477 FFFECB9745EFB9D109358D450779F68A96A14C9AC03AD4... -0.534232
[34478 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 34478, vs. num we are initializing: 34478
INFO:birdwatch.matrix_factorization:epoch 40 0.13671498000621796
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10655282437801361
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 34478
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=14.793373 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.493970 | time=7.5s
INFO:birdwatch.matrix_factorization:epoch 60 0.11313247680664062
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08503865450620651
INFO:birdwatch.matrix_factorization:epoch 60 0.45427459478378296
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3337731957435608
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.158050 | time=14.9s
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.matrix_factorization:epoch 140 0.4410019516944885
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.323337197303772
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=3.110130 | time=22.4s
INFO:birdwatch.scorer: Ratings after group filter: 11195017
INFO:birdwatch.matrix_factorization:epoch 80 0.10888727009296417
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08239106088876724
INFO:birdwatch.scorer:MFGroupScorer_14 Filter input elapsed time: 49.12 secs (0.82 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.matrix_factorization:Num epochs: 143
INFO:birdwatch.matrix_factorization:epoch 143 0.4410010874271393
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3233371376991272
INFO:birdwatch.matrix_factorization:Global Intercept: -0.20351645350456238
INFO:birdwatch.scorer:MFCoreScorer Harassment tag consensus elapsed time: 607.74 secs (10.13 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=3.097097 | time=29.8s
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.matrix_factorization:epoch 100 0.10845153033733368
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0821102038025856
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=3.091225 | time=37.3s
INFO:birdwatch.mf_base_scorer:ratings summary MFGroupScorer_14: 82f8fda71f7fbf66bf5eb19fd50ac62affbbca86cc9803421711e0f246d23187
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=3.087781 | time=44.7s
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 10305089, Num Unique Notes Rated: 393602, Num Unique Raters: 59422
INFO:birdwatch.scorer:MFGroupScorer_14 Prepare ratings elapsed time: 6.57 secs (0.11 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFCoreScorer Helpfulness scores post-harassment elapsed time: 18.44 secs (0.31 mins)
INFO:birdwatch.matrix_factorization:epoch 120 0.10838886350393295
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08207825571298599
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=3.085419 | time=52.1s
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFGroupScorer_14: fcc4c81174deeb13513bc6f2c7e015dadcb3a76a93f0b0ffce89df50628ddde0
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFGroupScorer_14: bab26056c2c51b2beff057f4e0fe86fa071404051fc10055597e708318a26b55
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFGroupScorer_14: 1b2a6ad46dcfd66350ebeb2e58eebae04708074b0cb986ec945580276c124614
INFO:birdwatch.matrix_factorization:Num epochs: 140
INFO:birdwatch.matrix_factorization:epoch 140 0.10838139802217484
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08207494020462036
INFO:birdwatch.matrix_factorization:Global Intercept: 0.16098268330097198
INFO:birdwatch.scorer:MFGroupScorer_1 First MF/stable init elapsed time: 85.93 secs (1.43 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFGroupScorer_1
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=3.083797 | time=59.4s
INFO:birdwatch.matrix_factorization:epoch 80 0.44978126883506775
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.33096587657928467
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 59422, Notes: 393602
INFO:birdwatch.matrix_factorization:learning rate set to :0.02
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 26.181495520856092
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 173.4221163878698
INFO:birdwatch.matrix_factorization:epoch 0 0.5232287049293518
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.5227042436599731
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=3.082702 | time=67.0s
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.70 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.60 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.62 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.76 secs (0.01 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=3.081970 | time=74.4s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(0.5084, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=3.081950 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.919948 | time=7.2s
INFO:birdwatch.matrix_factorization:epoch 20 0.20506006479263306
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.15459944307804108
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.909012 | time=14.3s
INFO:birdwatch.matrix_factorization:epoch 80 0.4497806131839752
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.33096542954444885
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.908116 | time=21.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=105 | loss=1.908076 | time=25.2s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.438201 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.355866 | time=4.3s
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.94 secs (0.58 mins)
INFO:birdwatch.scorer:MFGroupScorer_1 Compute scored notes elapsed time: 46.55 secs (0.78 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.354857 | time=8.5s
INFO:birdwatch.matrix_factorization:epoch 40 0.15487438440322876
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11901433020830154
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.354816 | time=10.6s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(1.6690, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 3.0820, 1.9081, 0.3548
INFO:birdwatch.scorer:MFGroupScorer_3 Low Diligence MF elapsed time: 114.13 secs (1.90 mins)
INFO:birdwatch.note_ratings:Total ratings: 5866137 post-tombstones and 1304 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 4499949, including 4499948 post-tombstones and 1 pre-tombstones.
INFO:birdwatch.note_ratings:Total valid ratings: 391240
INFO:birdwatch.scorer:MFGroupScorer_1 Compute valid ratings elapsed time: 7.56 secs (0.13 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_1 Helpfulness scores pre-harassment elapsed time: 0.60 secs (0.01 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.helpfulness_scores:Unique Raters: 54292
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 94597
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 44063
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 39628
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 5200616
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 4149971
INFO:birdwatch.scorer:MFGroupScorer_1 Filtering by helpfulness score elapsed time: 7.03 secs (0.12 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.59 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 2659054
1 166306
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 1324611
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.61 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.68 secs (0.01 mins)
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 2679514, Num Unique Notes Rated: 91114, Num Unique Raters: 37533
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 2530698
1 148816
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.05553842973016748
INFO:birdwatch.matrix_factorization:Using pos weight: 17.00555047844318 with BCEWithLogitsLoss
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 37533, Notes: 91114
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 29.40836753956582
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 71.39088268989956
INFO:birdwatch.matrix_factorization:epoch 0 3.42610502243042
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.5307347774505615
INFO:birdwatch.matrix_factorization:epoch 20 0.6929018497467041
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.38166314363479614
INFO:birdwatch.matrix_factorization:epoch 60 0.1264226734638214
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09259729832410812
INFO:birdwatch.matrix_factorization:epoch 40 0.46422964334487915
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3077114522457123
INFO:birdwatch.matrix_factorization:epoch 100 0.44909703731536865
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3306475877761841
INFO:birdwatch.matrix_factorization:epoch 60 0.430682510137558
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.29592713713645935
INFO:birdwatch.matrix_factorization:epoch 80 0.42618265748023987
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.29355210065841675
INFO:birdwatch.helpfulness_scores:Unique Raters: 590255
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 574793
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 408324
INFO:birdwatch.matrix_factorization:epoch 80 0.11993777751922607
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08940132707357407
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 33.45 secs (0.56 mins)
INFO:birdwatch.matrix_factorization:epoch 100 0.4254646897315979
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2931756377220154
INFO:birdwatch.matrix_factorization:Num epochs: 118
INFO:birdwatch.matrix_factorization:epoch 118 0.42537814378738403
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2931492328643799
INFO:birdwatch.matrix_factorization:Global Intercept: -0.23184406757354736
INFO:birdwatch.scorer:MFGroupScorer_1 Harassment tag consensus elapsed time: 40.62 secs (0.68 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFGroupScorer_1 Helpfulness scores post-harassment elapsed time: 0.97 secs (0.02 mins)
INFO:birdwatch.constants:MFGroupScorer_3: Compute tag thresholds for percentiles elapsed time: 7.74 secs (0.13 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 54292
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 94597
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 40474
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 36039
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 5200616
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 3215679
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.run_scoring:MFTopicScorer_Unassigned run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 36039, Notes: 141704
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 22.692930333653248
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 89.22775326729376
INFO:birdwatch.matrix_factorization:epoch 0 0.401736319065094
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3370682895183563
INFO:birdwatch.matrix_factorization:epoch 100 0.4490904211997986
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3306436836719513
INFO:birdwatch.matrix_factorization:epoch 100 0.11827641725540161
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08913040161132812
INFO:birdwatch.matrix_factorization:epoch 20 0.11152531951665878
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08081214874982834
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 377369
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 100691291
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 52234089
INFO:birdwatch.matrix_factorization:epoch 40 0.10744062811136246
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08087494224309921
INFO:birdwatch.run_scoring:MFTopicScorer_Unassigned run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFTopicScorer_Unassigned run_scorer_parallelizable: Loading data elapsed time: 19.34 secs (0.32 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFTopicScorer_Unassigned set to: 4
INFO:birdwatch.scorer:Filtering ratings for MFTopicScorer_Unassigned. Original rating length: 118317340
INFO:birdwatch.matrix_factorization:epoch 60 0.10690522193908691
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08003326505422592
INFO:birdwatch.matrix_factorization:epoch 120 0.11769574880599976
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08914262801408768
INFO:birdwatch.scorer: Ratings after topic filter: 0
INFO:birdwatch.scorer: Ratings after group filter: 0
INIT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/scorer.py, in prescore, at line 286: pd.DataFrame(columns=self.get_internal_scored_notes_cols()),
PandasTypeError: Type expectation mismatch on noteId: found=object expected=int64
INFO:birdwatch.scorer:MFTopicScorer_Unassigned Filter input elapsed time: 10.55 secs (0.18 mins)
INFO:birdwatch.run_scoring:MFTopicScorer_UkraineConflict run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.matrix_factorization:epoch 80 0.10672151297330856
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07912090420722961
INFO:birdwatch.matrix_factorization:epoch 100 0.10670797526836395
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0791497528553009
INFO:birdwatch.matrix_factorization:Num epochs: 101
INFO:birdwatch.matrix_factorization:epoch 101 0.10670797526836395
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0791497528553009
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1642342060804367
INFO:birdwatch.constants:Final round MF elapsed time: 48.14 secs (0.80 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_1 prescoring, about to call diligence with 3215679 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 0000D09E403B665ADB698D8DF843CB22F352EF89ABF7CB... -0.516906
1 00039991A9322D52F83399BC5B951F43B2A73869C21F10... -0.597522
2 000402D0CF8FEC70E5C4BA76322215AE1A965BBE8A7568... 0.259197
3 0004DC6827440EF91C141691934452677C533B6CA90AC4... -0.281706
4 000618D62D26469C059F4690178D06CB5483B122126D32... 0.556171
... ... ...
36034 FFF1B7F5E3903007BC3D5724DA6C406F78DEE26BE8456C... 0.472987
36035 FFF48D8AD66904B961AF600709250FD2CB54004147EB44... -0.191947
36036 FFF8367EF46CACBB9D7C020C910B12A206DAC9BA5E05A9... -0.554009
36037 FFF9D85CEB466E2694589895B9D234CD48219AC8D3ADC4... -0.324200
36038 FFFDEAD3B6BBA58927423C9C907473FD24FFEEACB4396E... 0.085110
[36039 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 36039, vs. num we are initializing: 36039
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 36039
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=18.535381 | time=0.0s
INFO:birdwatch.run_scoring:MFTopicScorer_UkraineConflict run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFTopicScorer_UkraineConflict run_scorer_parallelizable: Loading data elapsed time: 19.64 secs (0.33 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFTopicScorer_UkraineConflict set to: 4
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.746414 | time=7.3s
INFO:birdwatch.matrix_factorization:epoch 140 0.1173965111374855
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08920645713806152
INFO:birdwatch.matrix_factorization:epoch 120 0.44898372888565063
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.33060288429260254
INFO:birdwatch.scorer:Filtering ratings for MFTopicScorer_UkraineConflict. Original rating length: 118317340
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.315688 | time=14.5s
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 377369, Notes: 1203828
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=3.254010 | time=21.9s
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 43.389993420987054
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 138.41648095100552
INFO:birdwatch.matrix_factorization:epoch 0 0.377983421087265
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.31783124804496765
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=3.238822 | time=29.1s
INFO:birdwatch.matrix_factorization:Num epochs: 118
INFO:birdwatch.matrix_factorization:epoch 160 0.11718665808439255
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08927183598279953
INFO:birdwatch.matrix_factorization:epoch 118 0.44898954033851624
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3306144177913666
INFO:birdwatch.matrix_factorization:Global Intercept: -0.20237286388874054
INFO:birdwatch.scorer:MFExpansionScorer Harassment tag consensus elapsed time: 614.20 secs (10.24 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=3.233021 | time=36.4s
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.matrix_factorization:Num epochs: 128
INFO:birdwatch.matrix_factorization:epoch 128 0.44897085428237915
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.33059483766555786
INFO:birdwatch.matrix_factorization:Global Intercept: -0.20240214467048645
INFO:birdwatch.scorer:MFExpansionPlusScorer Harassment tag consensus elapsed time: 647.35 secs (10.79 mins)
INFO:birdwatch.scorer: Ratings after topic filter: 4092086
INFO:birdwatch.scorer: Ratings after group filter: 4092086
INFO:birdwatch.scorer:MFTopicScorer_UkraineConflict Filter input elapsed time: 35.35 secs (0.59 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=3.230194 | time=43.6s
INFO:birdwatch.mf_base_scorer:ratings summary MFTopicScorer_UkraineConflict: a07339ba6a72dc2c4115bdfd8c4ce154062a7bfadc759904f0ff6270aab95de4
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 3208653, Num Unique Notes Rated: 36218, Num Unique Raters: 77558
INFO:birdwatch.scorer:MFTopicScorer_UkraineConflict Prepare ratings elapsed time: 2.04 secs (0.03 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=3.228630 | time=50.6s
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFTopicScorer_UkraineConflict: 4e6394198c1760cfe6801faecda9539cf9dea7451ca93730b768dda4dc90c56b
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFTopicScorer_UkraineConflict: af3dc223c4a793d52240ecd18d39a5b43e2a4c289b5170b5b24c062c2d70098a
INFO:birdwatch.matrix_factorization:epoch 180 0.11701510846614838
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0893414095044136
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFTopicScorer_UkraineConflict: 1b2a6ad46dcfd66350ebeb2e58eebae04708074b0cb986ec945580276c124614
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 77558, Notes: 36218
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 88.59277155005799
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 41.371012661492045
INFO:birdwatch.matrix_factorization:epoch 0 6.66077995300293
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.194893836975098
INFO:birdwatch.scorer:MFExpansionScorer Helpfulness scores post-harassment elapsed time: 21.76 secs (0.36 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=3.227660 | time=57.7s
INFO:birdwatch.matrix_factorization:epoch 20 0.32391706109046936
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2694520056247711
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFExpansionPlusScorer Helpfulness scores post-harassment elapsed time: 22.63 secs (0.38 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=3.226992 | time=64.7s
INFO:birdwatch.matrix_factorization:epoch 40 0.12024037539958954
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08416181802749634
INFO:birdwatch.matrix_factorization:epoch 60 0.09186814725399017
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06257833540439606
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=3.226514 | time=71.8s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(1.0268, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=3.226501 | time=0.0s
INFO:birdwatch.matrix_factorization:epoch 200 0.11687801778316498
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0894116759300232
INFO:birdwatch.matrix_factorization:epoch 80 0.08778908848762512
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.060036398470401764
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.036354 | time=6.9s
INFO:birdwatch.matrix_factorization:epoch 100 0.0873025581240654
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05966803804039955
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.025881 | time=13.8s
INFO:birdwatch.matrix_factorization:epoch 120 0.08723433315753937
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05969322472810745
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.025078 | time=20.7s
INFO:birdwatch.matrix_factorization:epoch 20 0.11137835681438446
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08220585435628891
INFO:birdwatch.matrix_factorization:epoch 220 0.11676009744405746
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0894821360707283
INFO:birdwatch.reputation_matrix_factorization:epoch=100 | loss=2.025053 | time=23.1s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.396995 | time=0.0s
INFO:birdwatch.matrix_factorization:epoch 140 0.08722575753927231
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05966167896986008
INFO:birdwatch.matrix_factorization:Num epochs: 143
INFO:birdwatch.matrix_factorization:epoch 143 0.0872255191206932
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0596679225564003
INFO:birdwatch.matrix_factorization:Global Intercept: 0.15083946287631989
INFO:birdwatch.scorer:MFTopicScorer_UkraineConflict First MF/stable init elapsed time: 44.76 secs (0.75 mins)
INFO:birdwatch.mf_base_scorer:Skipping rep-filtering in prescoring for MFTopicScorer_UkraineConflict
/home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py:573: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
helpfulnessScores[
INFO:birdwatch.mf_base_scorer:In MFTopicScorer_UkraineConflict prescoring, about to call diligence with 3208653 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.315150 | time=4.0s
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 056B1936908F42285AC8A4E4CD928C9BC3DAD8547FEE39... -0.729118
1 F35972BBD2F99515FD974E9C7AFD899970F2E4A5911513... 0.156897
2 67B54620C2319FCDE70894F7B1D89C882952908664A35D... -0.815295
3 E23374E04DD1B97ED5E4BE68F56CD25AE5DE53DD2A3541... -0.219230
4 E462D40CC316ED0864D77A36DA000DA98A8A6F61C204DE... -0.774939
... ... ...
77553 FE9609DDEF180E906BB41137EB796FA99A971692115E38... 0.497978
77554 2106072920573EAC8033CACA80917F1E31B046A64BF772... -0.562641
77555 7B4C291871CF7E6FBAEE1C0F3DCBC6978FD32D56EA227C... -0.754790
77556 E8E0085E9629E94B7F3D1757968E2E51A773585C7F0BD0... -0.094775
77557 25B6B88DAE2AD3680710497AF96A0FD9B23C4997711E47... -0.405464
[77558 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 77558, vs. num we are initializing: 77558
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 77558
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=20.426998 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.314164 | time=8.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.314122 | time=10.1s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(2.2284, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 3.2265, 2.0251, 0.3141
INFO:birdwatch.scorer:MFGroupScorer_1 Low Diligence MF elapsed time: 108.57 secs (1.81 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.756299 | time=7.8s
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.60 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.68 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.61 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.262148 | time=15.5s
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.58 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.matrix_factorization:epoch 240 0.11665724217891693
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08955366909503937
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=3.197178 | time=23.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=3.183473 | time=30.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=3.178978 | time=38.5s
INFO:birdwatch.matrix_factorization:epoch 260 0.11656199395656586
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08962821215391159
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=3.177069 | time=46.1s
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 33.59 secs (0.56 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=3.176133 | time=53.8s
INFO:birdwatch.constants:MFGroupScorer_1: Compute tag thresholds for percentiles elapsed time: 7.10 secs (0.12 mins)
INFO:birdwatch.matrix_factorization:epoch 280 0.1164797842502594
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08969981968402863
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=3.175637 | time=61.5s
INFO:birdwatch.matrix_factorization:epoch 40 0.10973301529884338
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08385898917913437
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.run_scoring:MFTopicScorer_GazaConflict run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=3.175357 | time=69.6s
INFO:birdwatch.helpfulness_scores:Unique Raters: 747974
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 712504
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 542045
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=3.175201 | time=77.9s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(1.3211, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=3.175198 | time=0.0s
INFO:birdwatch.matrix_factorization:epoch 300 0.11640468239784241
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08977333456277847
INFO:birdwatch.run_scoring:MFTopicScorer_GazaConflict run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFTopicScorer_GazaConflict run_scorer_parallelizable: Loading data elapsed time: 18.92 secs (0.32 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFTopicScorer_GazaConflict set to: 4
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.833054 | time=7.5s
INFO:birdwatch.helpfulness_scores:Unique Raters: 747994
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 712511
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 542394
INFO:birdwatch.scorer:Filtering ratings for MFTopicScorer_GazaConflict. Original rating length: 118317340
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.825998 | time=14.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.824899 | time=22.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.824899 | time=22.3s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.292622 | time=0.0s
INFO:birdwatch.matrix_factorization:epoch 320 0.11634308099746704
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08984430134296417
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.203768 | time=4.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.202722 | time=8.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.202677 | time=10.9s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(3.1824, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 3.1752, 1.8249, 0.2027
INFO:birdwatch.scorer:MFTopicScorer_UkraineConflict Low Diligence MF elapsed time: 114.47 secs (1.91 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 0.71 secs (0.01 mins)
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 489451
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 116567689
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 61497058
INFO:birdwatch.constants:MFTopicScorer_UkraineConflict: Compute tag thresholds for percentiles elapsed time: 5.33 secs (0.09 mins)
INFO:birdwatch.scorer: Ratings after topic filter: 12081809
INFO:birdwatch.scorer: Ratings after group filter: 12081809
INFO:birdwatch.scorer:MFTopicScorer_GazaConflict Filter input elapsed time: 37.81 secs (0.63 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 489800
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 116569833
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 61623294
INFO:birdwatch.run_scoring:MFTopicScorer_MessiRonaldo run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.matrix_factorization:epoch 340 0.11628181487321854
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08991576731204987
INFO:birdwatch.matrix_factorization:epoch 60 0.10881572216749191
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08203759789466858
INFO:birdwatch.mf_base_scorer:ratings summary MFTopicScorer_GazaConflict: 723082fc06a9c0e97530557ad8a8003fcc3f188f1766118f3f407514620ef7b2
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 10946843, Num Unique Notes Rated: 96842, Num Unique Raters: 161638
INFO:birdwatch.scorer:MFTopicScorer_GazaConflict Prepare ratings elapsed time: 5.86 secs (0.10 mins)
INFO:birdwatch.run_scoring:MFTopicScorer_MessiRonaldo run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFTopicScorer_MessiRonaldo run_scorer_parallelizable: Loading data elapsed time: 18.77 secs (0.31 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFTopicScorer_MessiRonaldo set to: 4
INFO:birdwatch.matrix_factorization:epoch 360 0.11623252928256989
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08997941762208939
INFO:birdwatch.scorer:Filtering ratings for MFTopicScorer_MessiRonaldo. Original rating length: 118317340
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFTopicScorer_GazaConflict: fb2b6b467c852162acc41f9b86605716ca1bf82801cd8e72658a399bb84af0c0
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFTopicScorer_GazaConflict: 941d65797968844829bb0758ed7975894ac49da4cf4d6e543ea0b048d5571a66
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFTopicScorer_GazaConflict: 1b2a6ad46dcfd66350ebeb2e58eebae04708074b0cb986ec945580276c124614
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 161638, Notes: 96842
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 113.03817558497346
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 67.72443979757236
INFO:birdwatch.matrix_factorization:epoch 0 6.699262619018555
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.248696804046631
INFO:birdwatch.matrix_factorization:epoch 380 0.11618795990943909
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0900399312376976
INFO:birdwatch.scorer: Ratings after topic filter: 199000
INFO:birdwatch.scorer: Ratings after group filter: 199000
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 489451, Notes: 1295054
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 47.486095560494
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 125.64497365415536
INFO:birdwatch.scorer:MFTopicScorer_MessiRonaldo Filter input elapsed time: 30.09 secs (0.50 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.mf_base_scorer:ratings summary MFTopicScorer_MessiRonaldo: 17e195233e4335626a97343c1889685dd70059054629339200f9d331ea1bd254
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 62067, Num Unique Notes Rated: 2402, Num Unique Raters: 2779
INFO:birdwatch.scorer:MFTopicScorer_MessiRonaldo Prepare ratings elapsed time: 0.15 secs (0.00 mins)
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFTopicScorer_MessiRonaldo: a217d6c62c7d55fb45a1423ad1f7ad48919a7589b62809408d90532b0fc53eae
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFTopicScorer_MessiRonaldo: 8f15330e9e4bd02a2dcedfaaa02394dcbd9eb4e266eea0ca92faefd1b4025517
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFTopicScorer_MessiRonaldo: 1b2a6ad46dcfd66350ebeb2e58eebae04708074b0cb986ec945580276c124614
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 2779, Notes: 2402
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 25.83971690258118
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 22.334292911119107
INFO:birdwatch.matrix_factorization:epoch 0 6.959341049194336
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.453376770019531
INFO:birdwatch.matrix_factorization:epoch 20 0.35005903244018555
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2881944179534912
INFO:birdwatch.matrix_factorization:epoch 40 0.11375442892313004
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07303179055452347
INFO:birdwatch.matrix_factorization:epoch 60 0.08148330450057983
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.04638390243053436
INFO:birdwatch.matrix_factorization:epoch 80 0.07666441798210144
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0425170361995697
INFO:birdwatch.matrix_factorization:epoch 100 0.076076939702034
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.04200398176908493
INFO:birdwatch.matrix_factorization:epoch 120 0.07599727809429169
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.041975054889917374
INFO:birdwatch.matrix_factorization:epoch 140 0.07598765194416046
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.041963379830121994
INFO:birdwatch.matrix_factorization:Num epochs: 144
INFO:birdwatch.matrix_factorization:epoch 144 0.07598724961280823
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.04195939376950264
INFO:birdwatch.matrix_factorization:Global Intercept: 0.167100727558136
INFO:birdwatch.scorer:MFTopicScorer_MessiRonaldo First MF/stable init elapsed time: 1.46 secs (0.02 mins)
INFO:birdwatch.mf_base_scorer:Skipping rep-filtering in prescoring for MFTopicScorer_MessiRonaldo
/home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py:573: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
helpfulnessScores[
INFO:birdwatch.mf_base_scorer:In MFTopicScorer_MessiRonaldo prescoring, about to call diligence with 62067 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 90D27164DF30535EDB518FAD15DEE8728388F8CA14C75E... -0.772900
1 4E44139DB610989839A095579EBA2EF46825BF25E13FFD... 0.231995
2 2E31629F722BF87A215706A6311E21E123A4624B4D10E2... -0.758551
3 6745B794E9C46A45ABF33E250B5053EC684C28F888355F... -0.318866
4 5C923A1ACF69C684AFABDF63F42734BDCC5FE2B8E3611A... -0.628704
... ... ...
2774 36ABBE1781AD22B5AC38F261D170BF8ADEE815FE60A143... 0.172658
2775 3F13441FD8CF3294E04E38355EC53FAE3FE8C68CE6C8F7... 0.431192
2776 C579A175CA58969A611D429805EC38759B99F3378627BC... 0.187552
2777 6406A84AB54616A3BFF054E5D78B32D8836721FDCD72B8... -0.586839
2778 2A85A2042F4E35DAF08071EDAF3B34614F6FD4726CC9BB... -0.472816
[2779 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 2779, vs. num we are initializing: 2779
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 2779
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=18.600965 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.327718 | time=0.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.787355 | time=0.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.691185 | time=0.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.666158 | time=1.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=2.656056 | time=1.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=2.650549 | time=1.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=2.647326 | time=1.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=2.645029 | time=2.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=2.643422 | time=2.2s
INFO:birdwatch.matrix_factorization:epoch 0 0.3724973797798157
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3125559687614441
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=2.642532 | time=2.5s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(0.1515, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=2.642508 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.323409 | time=0.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.317610 | time=0.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.316520 | time=0.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.316520 | time=0.7s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.409433 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.305268 | time=0.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.304056 | time=0.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.304001 | time=0.4s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(1.8809, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 2.6425, 1.3165, 0.3040
INFO:birdwatch.scorer:MFTopicScorer_MessiRonaldo Low Diligence MF elapsed time: 3.67 secs (0.06 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 0.08 secs (0.00 mins)
INFO:birdwatch.constants:MFTopicScorer_MessiRonaldo: Compute tag thresholds for percentiles elapsed time: 0.24 secs (0.00 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.run_scoring:MFMultiGroupScorer_1 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.matrix_factorization:epoch 20 0.3809957504272461
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.32407498359680176
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 489800, Notes: 1295080
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 47.582615745745436
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 125.81317680685994
INFO:birdwatch.matrix_factorization:epoch 0 0.3725482225418091
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3126033842563629
INFO:birdwatch.matrix_factorization:epoch 400 0.11614863574504852
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0901012197136879
INFO:birdwatch.matrix_factorization:epoch 80 0.10870363563299179
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08158905804157257
INFO:birdwatch.run_scoring:MFMultiGroupScorer_1 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFMultiGroupScorer_1 run_scorer_parallelizable: Loading data elapsed time: 19.29 secs (0.32 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFMultiGroupScorer_1 set to: 4
INFO:birdwatch.matrix_factorization:epoch 40 0.11090180277824402
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0778173878788948
INFO:birdwatch.scorer:Filtering ratings for MFMultiGroupScorer_1. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.matrix_factorization:Num epochs: 416
INFO:birdwatch.matrix_factorization:epoch 416 0.11612030118703842
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09014349430799484
INFO:birdwatch.matrix_factorization:epoch 60 0.08644558489322662
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05855761840939522
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 59422, Notes: 393602
INFO:birdwatch.matrix_factorization:learning rate set to :0.02
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:epoch 0 0.12109839171171188
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.5229554772377014
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.matrix_factorization:epoch 80 0.08238106966018677
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05536932498216629
INFO:birdwatch.scorer: Ratings after group filter: 6123382
INFO:birdwatch.scorer:MFMultiGroupScorer_1 Filter input elapsed time: 45.11 secs (0.75 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.mf_base_scorer:ratings summary MFMultiGroupScorer_1: 20d18fde99178b622769a363d9f004f086b191c68cf48a19beee4150ad1d0426
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 5276919, Num Unique Notes Rated: 222841, Num Unique Raters: 54464
INFO:birdwatch.scorer:MFMultiGroupScorer_1 Prepare ratings elapsed time: 2.64 secs (0.04 mins)
INFO:birdwatch.matrix_factorization:epoch 20 0.11209049820899963
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08320221304893494
INFO:birdwatch.matrix_factorization:epoch 20 0.06309746205806732
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1838725507259369
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFMultiGroupScorer_1: 11517728fed2ccc5571312d84787362f4d263b57d1b607df03a32c9c8595f1de
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFMultiGroupScorer_1: bab26056c2c51b2beff057f4e0fe86fa071404051fc10055597e708318a26b55
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFMultiGroupScorer_1: 1b2a6ad46dcfd66350ebeb2e58eebae04708074b0cb986ec945580276c124614
INFO:birdwatch.matrix_factorization:epoch 100 0.08187726885080338
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05496150255203247
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 54464, Notes: 222841
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 23.680197988700463
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 96.88820138072856
INFO:birdwatch.matrix_factorization:epoch 0 6.21956205368042
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 5.767576694488525
INFO:birdwatch.matrix_factorization:epoch 20 0.11210079491138458
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0832115039229393
INFO:birdwatch.matrix_factorization:epoch 100 0.10869144648313522
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08150900155305862
INFO:birdwatch.matrix_factorization:Num epochs: 101
INFO:birdwatch.matrix_factorization:epoch 101 0.10869144648313522
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08150900155305862
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1698254644870758
INFO:birdwatch.constants:Final round MF elapsed time: 535.63 secs (8.93 mins)
INFO:birdwatch.mf_base_scorer:In MFCoreScorer prescoring, about to call diligence with 52234089 final round ratings.
INFO:birdwatch.matrix_factorization:epoch 20 0.3477414846420288
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2775827944278717
INFO:birdwatch.matrix_factorization:epoch 40 0.05974303185939789
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1947803646326065
INFO:birdwatch.matrix_factorization:epoch 120 0.08180892467498779
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.054906755685806274
INFO:birdwatch.matrix_factorization:epoch 40 0.14639396965503693
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.112333282828331
INFO:birdwatch.matrix_factorization:epoch 60 0.12049440294504166
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09189274907112122
INFO:birdwatch.matrix_factorization:epoch 60 0.053542256355285645
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.15519458055496216
INFO:birdwatch.matrix_factorization:epoch 140 0.08180093765258789
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.054893944412469864
INFO:birdwatch.matrix_factorization:Num epochs: 146
INFO:birdwatch.matrix_factorization:epoch 80 0.11436828970909119
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08636156469583511
INFO:birdwatch.matrix_factorization:epoch 146 0.08180038630962372
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05489334836602211
INFO:birdwatch.matrix_factorization:Global Intercept: 0.14470213651657104
INFO:birdwatch.scorer:MFTopicScorer_GazaConflict First MF/stable init elapsed time: 157.05 secs (2.62 mins)
INFO:birdwatch.mf_base_scorer:Skipping rep-filtering in prescoring for MFTopicScorer_GazaConflict
/home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py:573: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
helpfulnessScores[
INFO:birdwatch.mf_base_scorer:In MFTopicScorer_GazaConflict prescoring, about to call diligence with 10946843 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 F35972BBD2F99515FD974E9C7AFD899970F2E4A5911513... 0.703563
1 9E93A0C21A1CD3DD7C3A772E71A2DD0B6E79103B020A32... 0.786065
2 EF12C150CE8A147E0804CFBEA80649018A15435E54C4E5... 0.819809
3 EBDCB80B1EC4A9FB51C8A562377D72F9569692DEFFC8BC... 0.645086
4 70B62959F72CA22F3697BD4E5674B3990AD91893FD9320... 0.775824
... ... ...
161633 7B4C291871CF7E6FBAEE1C0F3DCBC6978FD32D56EA227C... 0.551154
161634 CCEEA2235CEE1B03C011F3EF3ECF769A3D9A9D8CE623D4... -0.314116
161635 C8C92EF65FB156E1A09F1C7468D0BB036225DE3927E945... -0.542172
161636 7C60F353091E8F57A620BC71CF1B2A8C810EA76EC08066... -0.466760
161637 544C40FD5CB0A723BA61EAEB9EF5EE1BE14D558CDBA69D... -0.610971
[161638 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 161638, vs. num we are initializing: 161638
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 161638
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=24.686903 | time=0.2s
INFO:birdwatch.matrix_factorization:epoch 100 0.11363682150840759
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08582276105880737
INFO:birdwatch.matrix_factorization:epoch 80 0.04737416282296181
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.12153952568769455
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 000011269AD6F327AED0F4086A732B4052F9D28E8791E1... -0.175260
1 000045A5FA0CF004F68CBF2913506C37D540CF48522D33... 0.694234
2 00005300B9017670433392BF6767238D54E058EC25D5C5... -0.286660
3 00007B885907790E492F8C9A31F1AFC20831279328C263... 0.431962
4 0000AE9A69E1B5D132C053E253DC42A007EDE2F11C39CF... 0.417850
... ... ...
377364 FFFFA008A90B7144EF2CC117355D4B4743C471CA9B2DCA... 0.493541
377365 FFFFAB2FDBC1968F4CFE97A86D88963D702B636365B6CD... 0.023487
377366 FFFFBBAB3C66ABB4DBC2A3B486C3C673345C89B5858465... 0.200495
377367 FFFFC819886B2F837503D840D59EE8321A835AAF2B5C1E... -0.186171
377368 FFFFFE8909485374E33854B934713713CAC93CDB50C9D0... 0.525469
[377369 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 377369, vs. num we are initializing: 377369
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 377369
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.matrix_factorization:epoch 120 0.11355504393577576
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08573752641677856
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=15.843794 | time=0.5s
INFO:birdwatch.matrix_factorization:epoch 40 0.11087857186794281
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08510537445545197
INFO:birdwatch.matrix_factorization:epoch 40 0.11088366061449051
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0851113572716713
INFO:birdwatch.matrix_factorization:epoch 140 0.1135435625910759
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0857313796877861
INFO:birdwatch.matrix_factorization:Num epochs: 148
INFO:birdwatch.matrix_factorization:epoch 148 0.11354270577430725
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08573180437088013
INFO:birdwatch.matrix_factorization:Global Intercept: 0.17076964676380157
INFO:birdwatch.scorer:MFMultiGroupScorer_1 First MF/stable init elapsed time: 86.26 secs (1.44 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFMultiGroupScorer_1
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.989847 | time=29.0s
INFO:birdwatch.matrix_factorization:epoch 100 0.0452355295419693
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11535946279764175
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.66 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.75 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.64 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.65 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.73 secs (0.01 mins)
INFO:birdwatch.matrix_factorization:epoch 120 0.044440120458602905
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11451677232980728
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.392782 | time=58.3s
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.27 secs (0.57 mins)
INFO:birdwatch.scorer:MFMultiGroupScorer_1 Compute scored notes elapsed time: 46.63 secs (0.78 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.matrix_factorization:epoch 140 0.04405667260289192
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11405300348997116
INFO:birdwatch.note_ratings:Total ratings: 6122270 post-tombstones and 1112 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 4838988, including 4838981 post-tombstones and 7 pre-tombstones.
INFO:birdwatch.note_ratings:Total valid ratings: 559088
INFO:birdwatch.scorer:MFMultiGroupScorer_1 Compute valid ratings elapsed time: 7.10 secs (0.12 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFMultiGroupScorer_1 Helpfulness scores pre-harassment elapsed time: 0.74 secs (0.01 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 54464
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 125134
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 49534
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=3.305246 | time=87.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.703397 | time=76.2s
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 43574
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 5276919
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 4382189
INFO:birdwatch.scorer:MFMultiGroupScorer_1 Filtering by helpfulness score elapsed time: 7.10 secs (0.12 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 2798897
1 252529
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 1330763
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 2814502, Num Unique Notes Rated: 143216, Num Unique Raters: 40533
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 2600687
1 213815
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.07596903466403648
INFO:birdwatch.matrix_factorization:Using pos weight: 12.163257956644763 with BCEWithLogitsLoss
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 40533, Notes: 143216
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 19.652147804714556
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 69.43729800409542
INFO:birdwatch.matrix_factorization:epoch 0 3.4466817378997803
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.5445270538330078
INFO:birdwatch.matrix_factorization:epoch 60 0.10976183414459229
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0828113704919815
INFO:birdwatch.matrix_factorization:epoch 160 0.04380316287279129
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11368976533412933
INFO:birdwatch.matrix_factorization:epoch 20 0.6939966082572937
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.40161973237991333
INFO:birdwatch.matrix_factorization:epoch 60 0.1097688376903534
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08282257616519928
INFO:birdwatch.matrix_factorization:epoch 40 0.49634698033332825
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3338276147842407
INFO:birdwatch.matrix_factorization:epoch 60 0.4679514765739441
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.32417595386505127
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=3.286071 | time=116.5s
INFO:birdwatch.matrix_factorization:epoch 80 0.46407079696655273
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.32240691781044006
INFO:birdwatch.matrix_factorization:epoch 100 0.46353405714035034
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.32215869426727295
INFO:birdwatch.matrix_factorization:epoch 180 0.043628476560115814
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1134783998131752
INFO:birdwatch.matrix_factorization:Num epochs: 112
INFO:birdwatch.matrix_factorization:epoch 112 0.4634898900985718
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.322145015001297
INFO:birdwatch.matrix_factorization:Global Intercept: -0.23346905410289764
INFO:birdwatch.scorer:MFMultiGroupScorer_1 Harassment tag consensus elapsed time: 38.94 secs (0.65 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFMultiGroupScorer_1 Helpfulness scores post-harassment elapsed time: 1.20 secs (0.02 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 54464
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 125134
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 45043
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 39083
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 5276919
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 3500898
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 39083, Notes: 222667
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 15.722572271598397
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 89.57597932604969
INFO:birdwatch.matrix_factorization:epoch 0 0.3783248960971832
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.31209078431129456
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=3.279547 | time=145.2s
INFO:birdwatch.matrix_factorization:epoch 20 0.11124187707901001
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08050009608268738
INFO:birdwatch.matrix_factorization:epoch 200 0.04350543022155762
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11330803483724594
INFO:birdwatch.matrix_factorization:epoch 40 0.1095086932182312
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08193044364452362
INFO:birdwatch.matrix_factorization:epoch 60 0.10819301754236221
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07915127277374268
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.364295 | time=151.6s
INFO:birdwatch.matrix_factorization:epoch 80 0.10814684629440308
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07923396676778793
INFO:birdwatch.matrix_factorization:epoch 220 0.04339803010225296
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11313688009977341
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=3.276680 | time=174.2s
INFO:birdwatch.matrix_factorization:epoch 100 0.1081295982003212
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07899565994739532
INFO:birdwatch.matrix_factorization:Num epochs: 103
INFO:birdwatch.matrix_factorization:epoch 103 0.10812994092702866
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0791429802775383
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1732679158449173
INFO:birdwatch.constants:Final round MF elapsed time: 49.07 secs (0.82 mins)
INFO:birdwatch.mf_base_scorer:In MFMultiGroupScorer_1 prescoring, about to call diligence with 3500898 final round ratings.
INFO:birdwatch.matrix_factorization:epoch 80 0.10968925058841705
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08260420709848404
INFO:birdwatch.matrix_factorization:epoch 80 0.10968227684497833
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0825948491692543
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 00003B703F86036C51F4F4B4C9F77B00C92D882421DA73... -0.455396
1 00018D8DDD8FE5AD262631A9CA08190AB95942067312FD... -0.096143
2 0001C21FD89AC65310D4D74174C0986CDF457DA24DADAB... 0.010154
3 0003B87251FE6860759A856C73472561F9A37C4813053E... -0.340809
4 0003E67BB62E658363186A00B13637CF1A58748C4E4ECE... 0.186204
... ... ...
39078 FFEF7AD019F0E1EE28157E1298D5469164E8D7AF2CA91D... -0.114137
39079 FFF3E935633C6870DE7674D0681C5821BC408073C84A36... 0.118961
39080 FFF89590FF300D0348631F2F16AA908F663A888A3F82E0... 0.386905
39081 FFFBC05DB8408BB532985642C4DE00EC619B062CB60E2E... 0.295953
39082 FFFE8C4E72CFDBD164D87E0FDA30F8334EC8B6013F1238... 0.346068
[39083 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 39083, vs. num we are initializing: 39083
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 39083
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=17.285879 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.650838 | time=8.0s
INFO:birdwatch.matrix_factorization:epoch 240 0.043300457298755646
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11295776069164276
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.230716 | time=15.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=3.275213 | time=203.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=3.163003 | time=23.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=3.143131 | time=31.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=3.134256 | time=39.8s
INFO:birdwatch.matrix_factorization:epoch 260 0.04321220517158508
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11280038207769394
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=3.129236 | time=47.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=3.274372 | time=232.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=3.126004 | time=55.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=3.321676 | time=230.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=3.123863 | time=63.6s
INFO:birdwatch.matrix_factorization:epoch 280 0.04312866926193237
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1126420646905899
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=3.122368 | time=71.6s
INFO:birdwatch.matrix_factorization:epoch 100 0.10967634618282318
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08246105164289474
INFO:birdwatch.matrix_factorization:Num epochs: 101
INFO:birdwatch.matrix_factorization:epoch 101 0.10967634618282318
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08246105164289474
INFO:birdwatch.matrix_factorization:Global Intercept: 0.17131315171718597
INFO:birdwatch.constants:Final round MF elapsed time: 615.45 secs (10.26 mins)
INFO:birdwatch.mf_base_scorer:In MFExpansionPlusScorer prescoring, about to call diligence with 61623294 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=3.121328 | time=79.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=3.273835 | time=261.9s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(0.7216, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=3.121299 | time=0.0s
INFO:birdwatch.matrix_factorization:epoch 100 0.10966924577951431
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08245106041431427
INFO:birdwatch.matrix_factorization:Num epochs: 101
INFO:birdwatch.matrix_factorization:epoch 101 0.10966924577951431
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08245106041431427
INFO:birdwatch.matrix_factorization:Global Intercept: 0.17132236063480377
INFO:birdwatch.constants:Final round MF elapsed time: 634.08 secs (10.57 mins)
INFO:birdwatch.mf_base_scorer:In MFExpansionScorer prescoring, about to call diligence with 61497058 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.996462 | time=7.7s
INFO:birdwatch.matrix_factorization:epoch 300 0.04304852336645126
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11248570680618286
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.985533 | time=15.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.984703 | time=23.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=100 | loss=1.984676 | time=25.7s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.477476 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=3.273465 | time=290.6s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(1.6498, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=3.273455 | time=0.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.393201 | time=4.5s
INFO:birdwatch.matrix_factorization:epoch 320 0.04297034814953804
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1123419925570488
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.392171 | time=9.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.392128 | time=11.2s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(1.8757, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 3.1213, 1.9847, 0.3921
INFO:birdwatch.scorer:MFMultiGroupScorer_1 Low Diligence MF elapsed time: 120.93 secs (2.02 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.70 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.61 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.61 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.71 secs (0.01 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=3.312581 | time=303.4s
INFO:birdwatch.matrix_factorization:epoch 340 0.04289426654577255
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1121964380145073
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.904213 | time=28.4s
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 000011269AD6F327AED0F4086A732B4052F9D28E8791E1... -0.166164
1 00003B703F86036C51F4F4B4C9F77B00C92D882421DA73... -0.445351
2 000045A5FA0CF004F68CBF2913506C37D540CF48522D33... 0.712713
3 00005300B9017670433392BF6767238D54E058EC25D5C5... -0.279733
4 00007B885907790E492F8C9A31F1AFC20831279328C263... 0.462355
... ... ...
489795 FFFFAB2FDBC1968F4CFE97A86D88963D702B636365B6CD... 0.043759
489796 FFFFBBAB3C66ABB4DBC2A3B486C3C673345C89B5858465... 0.211379
489797 FFFFC46B8555A97065DB39F7D600C8BB643F7F3EBD810E... 0.059706
489798 FFFFC819886B2F837503D840D59EE8321A835AAF2B5C1E... -0.215199
489799 FFFFFE8909485374E33854B934713713CAC93CDB50C9D0... 0.546871
[489800 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 489800, vs. num we are initializing: 489800
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 489800
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.matrix_factorization:epoch 360 0.04282209277153015
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11206253618001938
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=15.837796 | time=0.7s
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.04 secs (0.57 mins)
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 000011269AD6F327AED0F4086A732B4052F9D28E8791E1... -0.166075
1 00003B703F86036C51F4F4B4C9F77B00C92D882421DA73... -0.445450
2 000045A5FA0CF004F68CBF2913506C37D540CF48522D33... 0.712960
3 00005300B9017670433392BF6767238D54E058EC25D5C5... -0.277656
4 00007B885907790E492F8C9A31F1AFC20831279328C263... 0.462468
... ... ...
489446 FFFFAB2FDBC1968F4CFE97A86D88963D702B636365B6CD... 0.042596
489447 FFFFBBAB3C66ABB4DBC2A3B486C3C673345C89B5858465... 0.213774
489448 FFFFC46B8555A97065DB39F7D600C8BB643F7F3EBD810E... 0.060616
489449 FFFFC819886B2F837503D840D59EE8321A835AAF2B5C1E... -0.215851
489450 FFFFFE8909485374E33854B934713713CAC93CDB50C9D0... 0.546730
[489451 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 489451, vs. num we are initializing: 489451
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 489451
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.898035 | time=56.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=15.951445 | time=0.7s
INFO:birdwatch.constants:MFMultiGroupScorer_1: Compute tag thresholds for percentiles elapsed time: 9.96 secs (0.17 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.matrix_factorization:epoch 380 0.042749322950839996
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11193254590034485
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.896855 | time=85.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=100 | loss=1.896819 | time=95.6s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.250449 | time=0.2s
INFO:birdwatch.matrix_factorization:epoch 400 0.04268262907862663
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11180592328310013
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=3.309645 | time=378.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.175483 | time=18.0s
INFO:birdwatch.matrix_factorization:epoch 420 0.042615145444869995
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11168880760669708
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.716438 | time=82.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.174674 | time=35.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=070 | loss=0.174644 | time=41.7s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(3.6028, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 3.2735, 1.8968, 0.1746
INFO:birdwatch.scorer:MFTopicScorer_GazaConflict Low Diligence MF elapsed time: 439.58 secs (7.33 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.03 secs (0.00 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.04 secs (0.00 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.04 secs (0.00 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.04 secs (0.00 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.04 secs (0.00 mins)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 2.12 secs (0.04 mins)
INFO:birdwatch.matrix_factorization:epoch 440 0.04255577549338341
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11159063130617142
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.718773 | time=94.9s
INFO:birdwatch.constants:MFTopicScorer_GazaConflict: Compute tag thresholds for percentiles elapsed time: 22.64 secs (0.38 mins)
INFO:birdwatch.matrix_factorization:epoch 460 0.042498402297496796
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1114979088306427
INFO:birdwatch.matrix_factorization:Num epochs: 465
INFO:birdwatch.matrix_factorization:epoch 465 0.042490653693675995
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11147822439670563
INFO:birdwatch.matrix_factorization:Global Intercept: 0.15220145881175995
INFO:birdwatch.scorer:MFGroupScorer_14 First MF/stable init elapsed time: 1044.92 secs (17.42 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFGroupScorer_14
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=3.308357 | time=459.3s
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.64 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.74 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.66 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.77 secs (0.01 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.382811 | time=164.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.383152 | time=175.4s
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 33.73 secs (0.56 mins)
INFO:birdwatch.scorer:MFGroupScorer_14 Compute scored notes elapsed time: 55.40 secs (0.92 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.note_ratings:Total ratings: 11191003 post-tombstones and 4014 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 9098877, including 9098606 post-tombstones and 271 pre-tombstones.
INFO:birdwatch.note_ratings:Total valid ratings: 441893
INFO:birdwatch.scorer:MFGroupScorer_14 Compute valid ratings elapsed time: 14.34 secs (0.24 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_14 Helpfulness scores pre-harassment elapsed time: 0.95 secs (0.02 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=3.307673 | time=531.8s
INFO:birdwatch.helpfulness_scores:Unique Raters: 59422
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 135773
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 38591
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 37329
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 10305089
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 7696981
INFO:birdwatch.scorer:MFGroupScorer_14 Filtering by helpfulness score elapsed time: 13.75 secs (0.23 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 4600537
1 266733
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 2829711
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 4476956, Num Unique Notes Rated: 240923, Num Unique Raters: 35788
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 4247007
1 229949
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.05136280097459077
INFO:birdwatch.matrix_factorization:Using pos weight: 18.469343202188313 with BCEWithLogitsLoss
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 35788, Notes: 240923
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 18.58251806593808
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 125.09656868223986
INFO:birdwatch.matrix_factorization:epoch 0 3.189854145050049
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.3274030685424805
INFO:birdwatch.matrix_factorization:epoch 20 0.6892223954200745
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3509666919708252
INFO:birdwatch.matrix_factorization:epoch 40 0.4422963261604309
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.28034254908561707
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=3.341896 | time=244.5s
INFO:birdwatch.matrix_factorization:epoch 60 0.4078294634819031
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2675808072090149
INFO:birdwatch.matrix_factorization:epoch 80 0.4029937982559204
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2657165825366974
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=3.342025 | time=255.8s
INFO:birdwatch.matrix_factorization:epoch 100 0.40232470631599426
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.26539942622184753
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=3.307265 | time=604.5s
INFO:birdwatch.matrix_factorization:Num epochs: 118
INFO:birdwatch.matrix_factorization:epoch 118 0.4022292494773865
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2653917074203491
INFO:birdwatch.matrix_factorization:Global Intercept: -0.25583866238594055
INFO:birdwatch.scorer:MFGroupScorer_14 Harassment tag consensus elapsed time: 65.70 secs (1.09 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 167: helpfulnessScores = helpfulnessScores.merge(
PandasTypeError: Output mismatch on totalHelpfulHarassmentPenalty: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFGroupScorer_14 Helpfulness scores post-harassment elapsed time: 2.08 secs (0.03 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 59422
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 135773
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 35090
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 33828
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 10305089
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 5960805
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 33828, Notes: 391715
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.02
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 15.217198728667526
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 176.20920539198298
INFO:birdwatch.matrix_factorization:epoch 0 0.16280224919319153
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1430436670780182
INFO:birdwatch.matrix_factorization:epoch 20 0.12330132722854614
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09288666397333145
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=3.333297 | time=324.7s
INFO:birdwatch.matrix_factorization:epoch 40 0.11992843449115753
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09041672945022583
INFO:birdwatch.matrix_factorization:epoch 60 0.11925151944160461
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08986031264066696
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=3.333314 | time=337.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=3.307006 | time=678.0s
INFO:birdwatch.matrix_factorization:epoch 80 0.1190737709403038
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08961638063192368
INFO:birdwatch.matrix_factorization:epoch 100 0.11900263279676437
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08947830647230148
INFO:birdwatch.matrix_factorization:epoch 120 0.11896945536136627
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08936286717653275
INFO:birdwatch.matrix_factorization:Num epochs: 124
INFO:birdwatch.matrix_factorization:epoch 124 0.11896771192550659
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08934778720140457
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 33828, Notes: 391715
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.02
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:epoch 0 0.08717896789312363
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.30558687448501587
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=3.330579 | time=405.0s
INFO:birdwatch.matrix_factorization:epoch 20 0.05134270712733269
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.12314626574516296
INFO:birdwatch.matrix_factorization:epoch 40 0.04723444581031799
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11297580599784851
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=3.306842 | time=751.4s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(1.0968, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=3.306838 | time=0.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=3.330473 | time=417.9s
INFO:birdwatch.matrix_factorization:epoch 60 0.04607836902141571
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11370635032653809
INFO:birdwatch.matrix_factorization:epoch 80 0.04567534849047661
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11388987302780151
INFO:birdwatch.matrix_factorization:epoch 100 0.04547697305679321
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11417226493358612
INFO:birdwatch.matrix_factorization:epoch 120 0.045362748205661774
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11452613025903702
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=3.329425 | time=486.1s
INFO:birdwatch.matrix_factorization:epoch 140 0.045282356441020966
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11480464786291122
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.069114 | time=70.5s
INFO:birdwatch.matrix_factorization:epoch 160 0.04522169381380081
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1150297150015831
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=3.329241 | time=498.9s
INFO:birdwatch.matrix_factorization:epoch 180 0.04516759514808655
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11521623283624649
INFO:birdwatch.matrix_factorization:Num epochs: 182
INFO:birdwatch.matrix_factorization:epoch 182 0.045167598873376846
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11522604525089264
INFO:birdwatch.matrix_factorization:Global Intercept: 0.16320422291755676
INFO:birdwatch.constants:Final round MF elapsed time: 234.84 secs (3.91 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_14 prescoring, about to call diligence with 5960805 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 0002725E706CF18C040E21F30CE2D39994513C3BB8CF58... 0.091846
1 00032CF270BEF4007D6B24E33135CD078C72B0965FCD8D... -0.855938
2 00054DA8CA53842EE3042D2E203830D7F023E91EC47259... -0.675938
3 000818E860FC3D0209D9E2493FC76B78311313A011891F... -0.430495
4 000AC81189581CADFDC18CD0617507240DAB2F2CD05AAC... -0.339038
... ... ...
33823 FFFD9C3BC7BB3A78D72C67E34A7BDEFAAFFC485AAE049D... 0.285925
33824 FFFDDE9AE1DFCB76019D1A523D5CC586BB1AB22B878801... 0.372995
33825 FFFF4DD649728988010BBC2B953A59797EA70028B58EA8... -0.670635
33826 FFFFC819886B2F837503D840D59EE8321A835AAF2B5C1E... -0.212466
33827 FFFFFE8909485374E33854B934713713CAC93CDB50C9D0... 0.653602
[33828 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 33828, vs. num we are initializing: 33828
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 33828
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=16.812336 | time=0.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.595252 | time=14.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.191230 | time=29.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.058878 | time=140.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=3.124678 | time=43.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=3.328831 | time=568.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=3.104377 | time=58.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=3.328612 | time=579.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=3.095136 | time=72.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=3.089811 | time=86.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=3.086323 | time=101.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.058023 | time=210.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.058023 | time=210.7s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.339636 | time=0.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=3.083937 | time=115.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=3.328487 | time=650.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=3.082276 | time=130.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=3.081114 | time=144.6s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(0.4415, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=3.081080 | time=0.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=3.328250 | time=660.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.925755 | time=13.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.254762 | time=48.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.914432 | time=27.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.913625 | time=41.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=100 | loss=1.913596 | time=46.0s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.439497 | time=0.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.368043 | time=8.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.367151 | time=16.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=3.328269 | time=731.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.253774 | time=96.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.367114 | time=21.1s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(1.5775, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 3.0811, 1.9136, 0.3671
INFO:birdwatch.scorer:MFGroupScorer_14 Low Diligence MF elapsed time: 219.54 secs (3.66 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=3.328033 | time=742.0s
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.76 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.60 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.253734 | time=119.8s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(2.5740, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 3.3068, 2.0580, 0.2537
INFO:birdwatch.scorer:MFCoreScorer Low Diligence MF elapsed time: 1148.13 secs (19.14 mins)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 33.25 secs (0.55 mins)
INFO:birdwatch.constants:MFGroupScorer_14: Compute tag thresholds for percentiles elapsed time: 16.01 secs (0.27 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=3.328127 | time=812.3s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(1.1629, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=3.328123 | time=0.6s
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=3.327889 | time=820.8s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(1.1639, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=3.327885 | time=0.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.088579 | time=76.1s
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.65 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.13 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.82 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.05 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.70 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.60 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.74 secs (0.01 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.088306 | time=75.9s
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 33.90 secs (0.57 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.078291 | time=150.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.078082 | time=152.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.077414 | time=223.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.077211 | time=228.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.077211 | time=228.5s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.336494 | time=0.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=100 | loss=2.077385 | time=247.7s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.336255 | time=0.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.249541 | time=51.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.249273 | time=50.4s
INFO:birdwatch.constants:MFCoreScorer: Compute tag thresholds for percentiles elapsed time: 205.08 secs (3.42 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.248245 | time=100.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.248514 | time=102.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.248205 | time=124.2s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(2.6551, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 3.3281, 2.0774, 0.2482
INFO:birdwatch.scorer:MFExpansionPlusScorer Low Diligence MF elapsed time: 1268.65 secs (21.14 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.248473 | time=128.4s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(2.6519, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 3.3279, 2.0772, 0.2485
INFO:birdwatch.scorer:MFExpansionScorer Low Diligence MF elapsed time: 1261.19 secs (21.02 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.55 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.13 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.57 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.53 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.64 secs (0.01 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.55 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.12 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.67 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.57 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.52 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.62 secs (0.01 mins)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 30.42 secs (0.51 mins)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 30.69 secs (0.51 mins)
INFO:birdwatch.constants:MFExpansionScorer: Compute tag thresholds for percentiles elapsed time: 195.79 secs (3.26 mins)
INFO:birdwatch.constants:MFExpansionPlusScorer: Compute tag thresholds for percentiles elapsed time: 193.37 secs (3.22 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.run_scoring:Got model results from all scorers.
INFO:birdwatch.run_scoring:----
Completed individual scorers. Ran in parallel: True. Succeeded in 5344.91 seconds.
Individual scorers: (name, runtime): [('MFCoreScorer', '76.92 mins'), ('MFExpansionScorer', '83.77 mins'), ('MFExpansionPlusScorer', '83.83 mins'), ('ReputationScorer', '33.15 mins'), ('MFGroupScorer_13', '33.63 mins'), ('MFGroupScorer_12', '2.57 mins'), ('MFGroupScorer_11', '3.27 mins'), ('MFGroupScorer_10', '2.72 mins'), ('MFGroupScorer_9', '8.08 mins'), ('MFGroupScorer_8', '2.60 mins'), ('MFGroupScorer_7', '3.70 mins'), ('MFGroupScorer_6', '7.19 mins'), ('MFGroupScorer_5', '2.45 mins'), ('MFGroupScorer_4', '3.87 mins'), ('MFGroupScorer_3', '8.05 mins'), ('MFGroupScorer_2', '3.23 mins'), ('MFGroupScorer_1', '7.78 mins'), ('MFGroupScorer_14', '30.27 mins'), ('MFTopicScorer_Unassigned', '0.18 mins'), ('MFTopicScorer_UkraineConflict', '3.62 mins'), ('MFTopicScorer_GazaConflict', '11.94 mins'), ('MFTopicScorer_MessiRonaldo', '0.62 mins'), ('MFMultiGroupScorer_1', '8.05 mins')]
----
/home/ubuntu/communitynotes/sourcecode/scoring/pandas_utils.py:364: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.
result = self._origConcat(*args, **kwargs)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/run_scoring.py, in combine_prescorer_scorer_results, at line 484: prescoringNoteModelOutput = pd.concat(
PandasTypeError: Type expectation mismatch on noteId: found=object expected=int64
PandasTypeError: DataFrame concat on noteId: output=object inputs=[dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('O'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64')] (allowed)
PandasTypeError: DataFrame concat on internalNoteIntercept: output=float32 inputs=[dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('O'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32')] (allowed)
PandasTypeError: DataFrame concat on internalNoteFactor1: output=float32 inputs=[dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('O'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32')] (allowed)
PandasTypeError: DataFrame concat on lowDiligenceNoteIntercept: output=float32 inputs=[dtype('float32'), dtype('float32'), dtype('float32'), dtype('float64'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('O'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32')] (allowed)
PandasTypeError: DataFrame concat on lowDiligenceNoteFactor1: output=float32 inputs=[dtype('float32'), dtype('float32'), dtype('float32'), dtype('float64'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('O'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32')] (allowed)
PandasTypeError: Type expectation mismatch on noteId: found=object expected=int64
/home/ubuntu/communitynotes/sourcecode/scoring/pandas_utils.py:364: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.
result = self._origConcat(*args, **kwargs)
/home/ubuntu/communitynotes/sourcecode/scoring/pandas_utils.py:364: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.
result = self._origConcat(*args, **kwargs)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/run_scoring.py, in combine_prescorer_scorer_results, at line 505: raterParamsUnfilteredMultiScorers = pd.concat(
PandasTypeError: DataFrame concat on internalRaterIntercept: output=float32 inputs=[dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('O'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32')] (allowed)
PandasTypeError: DataFrame concat on internalRaterFactor1: output=float32 inputs=[dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('O'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32')] (allowed)
PandasTypeError: DataFrame concat on crhCrnhRatioDifference: output=float64 inputs=[dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('O'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64')] (allowed)
PandasTypeError: DataFrame concat on meanNoteScore: output=float64 inputs=[dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('O'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64')] (allowed)
PandasTypeError: DataFrame concat on raterAgreeRatio: output=float64 inputs=[dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('O'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64')] (allowed)
PandasTypeError: DataFrame concat on aboveHelpfulnessThreshold: output=object inputs=[dtype('bool'), dtype('bool'), dtype('bool'), dtype('float64'), dtype('bool'), dtype('bool'), dtype('bool'), dtype('bool'), dtype('bool'), dtype('bool'), dtype('bool'), dtype('bool'), dtype('bool'), dtype('bool'), dtype('bool'), dtype('bool'), dtype('bool'), dtype('bool'), dtype('O'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('bool')] (allowed)
PandasTypeError: DataFrame concat on internalRaterReputation: output=float32 inputs=[dtype('float64'), dtype('float64'), dtype('float64'), dtype('float32'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64')] (allowed)
PandasTypeError: DataFrame concat on lowDiligenceRaterIntercept: output=float32 inputs=[dtype('float32'), dtype('float32'), dtype('float32'), dtype('float64'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('O'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32')] (allowed)
PandasTypeError: DataFrame concat on lowDiligenceRaterFactor1: output=float32 inputs=[dtype('float32'), dtype('float32'), dtype('float32'), dtype('float64'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('O'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32')] (allowed)
PandasTypeError: DataFrame concat on lowDiligenceRaterReputation: output=float32 inputs=[dtype('float32'), dtype('float32'), dtype('float32'), dtype('float64'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('O'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32')] (allowed)
PandasTypeError: DataFrame concat on incorrectTagRatingsMadeByRater: output=Int64 inputs=[Int64Dtype(), Int64Dtype(), Int64Dtype(), dtype('float64'), Int64Dtype(), Int64Dtype(), Int64Dtype(), Int64Dtype(), Int64Dtype(), Int64Dtype(), Int64Dtype(), Int64Dtype(), Int64Dtype(), Int64Dtype(), Int64Dtype(), Int64Dtype(), Int64Dtype(), Int64Dtype(), Int64Dtype(), Int64Dtype(), Int8Dtype(), Int64Dtype()] (allowed)
INFO:birdwatch.run_scoring:notes total RAM: 122768821 bytes (0.123 GB)
column dtype RAM
0 noteId int64 12432248
1 noteAuthorParticipantId object 12432248
2 createdAtMillis int64 12432248
3 tweetId object 12432248
4 classification object 12432248
5 believable category 1554155
6 harmful category 1554155
7 validationDifficulty category 1554155
8 misleadingOther Int8 3108062
9 misleadingFactualError Int8 3108062
10 misleadingManipulatedMedia Int8 3108062
11 misleadingOutdatedInformation Int8 3108062
12 misleadingMissingImportantContext Int8 3108062
13 misleadingUnverifiedClaimAsFact Int8 3108062
14 misleadingSatire Int8 3108062
15 notMisleadingOther Int8 3108062
16 notMisleadingFactuallyCorrect Int8 3108062
17 notMisleadingOutdatedButNotWhenWritten Int8 3108062
18 notMisleadingClearlySatire Int8 3108062
19 notMisleadingPersonalOpinion Int8 3108062
20 trustworthySources Int8 3108062
21 summary object 12432248
22 isMediaNote Int8 3108062
INFO:birdwatch.run_scoring:ratings total RAM: 13133224872 bytes (13.133 GB)
column dtype RAM
0 noteId int64 946538720
1 raterParticipantId object 946538720
2 createdAtMillis int64 946538720
3 version Int8 236634680
4 agree Int8 236634680
5 disagree Int8 236634680
6 helpful Int8 236634680
7 notHelpful Int8 236634680
8 helpfulnessLevel category 118317472
9 helpfulOther Int8 236634680
10 helpfulInformative Int8 236634680
11 helpfulClear Int8 236634680
12 helpfulEmpathetic Int8 236634680
13 helpfulGoodSources Int8 236634680
14 helpfulUniqueContext Int8 236634680
15 helpfulAddressesClaim Int8 236634680
16 helpfulImportantContext Int8 236634680
17 helpfulUnbiasedLanguage Int8 236634680
18 notHelpfulOther Int8 236634680
19 notHelpfulIncorrect Int8 236634680
20 notHelpfulSourcesMissingOrUnreliable Int8 236634680
21 notHelpfulOpinionSpeculationOrBias Int8 236634680
22 notHelpfulMissingKeyPoints Int8 236634680
23 notHelpfulOutdated Int8 236634680
24 notHelpfulHardToUnderstand Int8 236634680
25 notHelpfulArgumentativeOrBiased Int8 236634680
26 notHelpfulOffTopic Int8 236634680
27 notHelpfulSpamHarassmentOrAbuse Int8 236634680
28 notHelpfulIrrelevantSources Int8 236634680
29 notHelpfulOpinionSpeculation Int8 236634680
30 notHelpfulNoteNotNeeded Int8 236634680
31 ratedOnTweetId int64 946538720
32 helpfulNum float64 946538720
33 postSelectionValue float64 946538720
34 postSelectionValue_note_author float64 946538720
INFO:birdwatch.run_scoring:noteStatusHistory total RAM: 225817062 bytes (0.226 GB)
column dtype RAM
0 noteId int64 14004048
1 noteAuthorParticipantId object 14004048
2 createdAtMillis float64 14004048
3 timestampMillisOfFirstNonNMRStatus float64 14004048
4 firstNonNMRStatus category 1750630
5 timestampMillisOfCurrentStatus float64 14004048
6 currentStatus category 1750638
7 timestampMillisOfLatestNonNMRStatus float64 14004048
8 mostRecentNonNMRStatus category 1750630
9 timestampMillisOfStatusLock float64 14004048
10 lockedStatus category 1750638
11 timestampMillisOfRetroLock float64 14004048
12 currentCoreStatus category 1750638
13 currentExpansionStatus category 1750638
14 currentGroupStatus category 1750638
15 currentDecidedBy category 1751254
16 currentModelingGroup float64 14004048
17 timestampMillisOfMostRecentStatusChange float64 14004048
18 timestampMillisOfNmrDueToMinStableCrhTime float64 14004048
19 currentMultiGroupStatus category 1750638
20 currentModelingMultiGroup float64 14004048
21 timestampMinuteOfFinalScoringOutput float64 14004048
22 timestampMillisOfFirstNmrDueToMinStableCrhTime float64 14004048
23 classification object 14004048
INFO:birdwatch.run_scoring:userEnrollment total RAM: 59362560 bytes (0.059 GB)
column dtype RAM
0 participantId object 8331584
1 enrollmentState object 8331584
2 successfulRatingNeededToEarnIn int64 8331584
3 timestampOfLastStateChange int64 8331584
4 timestampOfLastEarnOut float64 8331584
5 modelingPopulation category 1041472
6 modelingGroup float64 8331584
7 numberOfTimesEarnedOut int64 8331584
INFO:birdwatch.run_scoring:prescoringNoteModelOutput total RAM: 288245304 bytes (0.288 GB)
column dtype RAM
0 noteId object 64054512
1 internalNoteIntercept float32 32027256
2 internalNoteFactor1 float32 32027256
3 scorerName object 64054512
4 lowDiligenceNoteIntercept float32 32027256
5 lowDiligenceNoteFactor1 float32 32027256
6 lowDiligenceNoteInterceptRound2 float32 32027256
INFO:birdwatch.run_scoring:prescoringRaterModelOutput total RAM: 401387130 bytes (0.401 GB)
column dtype RAM
0 raterParticipantId object 31793040
1 internalRaterIntercept float32 15896520
2 internalRaterFactor1 float32 15896520
3 crhCrnhRatioDifference float64 31793040
4 meanNoteScore float64 31793040
5 raterAgreeRatio float64 31793040
6 aboveHelpfulnessThreshold object 31793040
7 scorerName object 31793040
8 internalRaterReputation float32 15896520
9 lowDiligenceRaterIntercept float32 15896520
10 lowDiligenceRaterFactor1 float32 15896520
11 lowDiligenceRaterReputation float32 15896520
12 lowDiligenceRaterInterceptRound2 float32 15896520
13 incorrectTagRatingsMadeByRater Int64 35767170
14 totalRatingsMadeByRater float64 31793040
15 postSelectionValue float64 31793040
INFO:birdwatch.constants:Logging Prescoring Results RAM usage (before conversion) elapsed time: 0.05 secs (0.00 mins)
INFO:birdwatch.run_scoring:notes total RAM: 122768821 bytes (0.123 GB)
column dtype RAM
0 noteId int64 12432248
1 noteAuthorParticipantId object 12432248
2 createdAtMillis int64 12432248
3 tweetId object 12432248
4 classification object 12432248
5 believable category 1554155
6 harmful category 1554155
7 validationDifficulty category 1554155
8 misleadingOther Int8 3108062
9 misleadingFactualError Int8 3108062
10 misleadingManipulatedMedia Int8 3108062
11 misleadingOutdatedInformation Int8 3108062
12 misleadingMissingImportantContext Int8 3108062
13 misleadingUnverifiedClaimAsFact Int8 3108062
14 misleadingSatire Int8 3108062
15 notMisleadingOther Int8 3108062
16 notMisleadingFactuallyCorrect Int8 3108062
17 notMisleadingOutdatedButNotWhenWritten Int8 3108062
18 notMisleadingClearlySatire Int8 3108062
19 notMisleadingPersonalOpinion Int8 3108062
20 trustworthySources Int8 3108062
21 summary object 12432248
22 isMediaNote Int8 3108062
INFO:birdwatch.run_scoring:ratings total RAM: 13133224872 bytes (13.133 GB)
column dtype RAM
0 noteId int64 946538720
1 raterParticipantId object 946538720
2 createdAtMillis int64 946538720
3 version Int8 236634680
4 agree Int8 236634680
5 disagree Int8 236634680
6 helpful Int8 236634680
7 notHelpful Int8 236634680
8 helpfulnessLevel category 118317472
9 helpfulOther Int8 236634680
10 helpfulInformative Int8 236634680
11 helpfulClear Int8 236634680
12 helpfulEmpathetic Int8 236634680
13 helpfulGoodSources Int8 236634680
14 helpfulUniqueContext Int8 236634680
15 helpfulAddressesClaim Int8 236634680
16 helpfulImportantContext Int8 236634680
17 helpfulUnbiasedLanguage Int8 236634680
18 notHelpfulOther Int8 236634680
19 notHelpfulIncorrect Int8 236634680
20 notHelpfulSourcesMissingOrUnreliable Int8 236634680
21 notHelpfulOpinionSpeculationOrBias Int8 236634680
22 notHelpfulMissingKeyPoints Int8 236634680
23 notHelpfulOutdated Int8 236634680
24 notHelpfulHardToUnderstand Int8 236634680
25 notHelpfulArgumentativeOrBiased Int8 236634680
26 notHelpfulOffTopic Int8 236634680
27 notHelpfulSpamHarassmentOrAbuse Int8 236634680
28 notHelpfulIrrelevantSources Int8 236634680
29 notHelpfulOpinionSpeculation Int8 236634680
30 notHelpfulNoteNotNeeded Int8 236634680
31 ratedOnTweetId int64 946538720
32 helpfulNum float64 946538720
33 postSelectionValue float64 946538720
34 postSelectionValue_note_author float64 946538720
INFO:birdwatch.run_scoring:noteStatusHistory total RAM: 225817062 bytes (0.226 GB)
column dtype RAM
0 noteId int64 14004048
1 noteAuthorParticipantId object 14004048
2 createdAtMillis float64 14004048
3 timestampMillisOfFirstNonNMRStatus float64 14004048
4 firstNonNMRStatus category 1750630
5 timestampMillisOfCurrentStatus float64 14004048
6 currentStatus category 1750638
7 timestampMillisOfLatestNonNMRStatus float64 14004048
8 mostRecentNonNMRStatus category 1750630
9 timestampMillisOfStatusLock float64 14004048
10 lockedStatus category 1750638
11 timestampMillisOfRetroLock float64 14004048
12 currentCoreStatus category 1750638
13 currentExpansionStatus category 1750638
14 currentGroupStatus category 1750638
15 currentDecidedBy category 1751254
16 currentModelingGroup float64 14004048
17 timestampMillisOfMostRecentStatusChange float64 14004048
18 timestampMillisOfNmrDueToMinStableCrhTime float64 14004048
19 currentMultiGroupStatus category 1750638
20 currentModelingMultiGroup float64 14004048
21 timestampMinuteOfFinalScoringOutput float64 14004048
22 timestampMillisOfFirstNmrDueToMinStableCrhTime float64 14004048
23 classification object 14004048
INFO:birdwatch.run_scoring:userEnrollment total RAM: 59362560 bytes (0.059 GB)
column dtype RAM
0 participantId object 8331584
1 enrollmentState object 8331584
2 successfulRatingNeededToEarnIn int64 8331584
3 timestampOfLastStateChange int64 8331584
4 timestampOfLastEarnOut float64 8331584
5 modelingPopulation category 1041472
6 modelingGroup float64 8331584
7 numberOfTimesEarnedOut int64 8331584
INFO:birdwatch.run_scoring:prescoringNoteModelOutput total RAM: 288245304 bytes (0.288 GB)
column dtype RAM
0 noteId object 64054512
1 internalNoteIntercept float32 32027256
2 internalNoteFactor1 float32 32027256
3 scorerName object 64054512
4 lowDiligenceNoteIntercept float32 32027256
5 lowDiligenceNoteFactor1 float32 32027256
6 lowDiligenceNoteInterceptRound2 float32 32027256
INFO:birdwatch.run_scoring:prescoringRaterModelOutput total RAM: 401387130 bytes (0.401 GB)
column dtype RAM
0 raterParticipantId object 31793040
1 internalRaterIntercept float32 15896520
2 internalRaterFactor1 float32 15896520
3 crhCrnhRatioDifference float64 31793040
4 meanNoteScore float64 31793040
5 raterAgreeRatio float64 31793040
6 aboveHelpfulnessThreshold object 31793040
7 scorerName object 31793040
8 internalRaterReputation float32 15896520
9 lowDiligenceRaterIntercept float32 15896520
10 lowDiligenceRaterFactor1 float32 15896520
11 lowDiligenceRaterReputation float32 15896520
12 lowDiligenceRaterInterceptRound2 float32 15896520
13 incorrectTagRatingsMadeByRater Int64 35767170
14 totalRatingsMadeByRater float64 31793040
15 postSelectionValue float64 31793040
INFO:birdwatch.constants:Logging Prescoring Results RAM usage (after conversion) elapsed time: 0.05 secs (0.00 mins)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/run_scoring.py, in run_prescoring, at line 1187: prescoringRaterModelOutput = pd.concat(
PandasTypeError: DataFrame concat on postSelectionValue: output=float64 inputs=[dtype('float64'), dtype('int64')] (allowed)
INFO:birdwatch.run_scoring:prescoringRaterModelOutput total RAM: 401488938 bytes (0.401 GB)
column dtype RAM
0 raterParticipantId object 31801104
1 internalRaterIntercept float32 15900552
2 internalRaterFactor1 float32 15900552
3 crhCrnhRatioDifference float64 31801104
4 meanNoteScore float64 31801104
5 raterAgreeRatio float64 31801104
6 aboveHelpfulnessThreshold object 31801104
7 scorerName object 31801104
8 internalRaterReputation float32 15900552
9 lowDiligenceRaterIntercept float32 15900552
10 lowDiligenceRaterFactor1 float32 15900552
11 lowDiligenceRaterReputation float32 15900552
12 lowDiligenceRaterInterceptRound2 float32 15900552
13 incorrectTagRatingsMadeByRater Int64 35776242
14 totalRatingsMadeByRater float64 31801104
15 postSelectionValue float64 31801104
INFO:birdwatch.constants:Logging Prescoring Results RAM usage (after concatenation) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.run_scoring:Initial value of OPENBLAS_NUM_THREADS: None
INFO:birdwatch.run_scoring:New value of OPENBLAS_NUM_THREADS: 1
INFO:birdwatch.pflip_model:seeding pflip: 0
INFO:birdwatch.pflip_model:total ratings considered for pflip model: 118317340
INFO:birdwatch.pflip_model:total ratings before initial note status for pflip model: 96900804
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/pflip_model.py, in _get_recent_notes, at line 303: noteStatusHistory[[c.noteIdKey, c.createdAtMillisKey]].merge(
PandasTypeError: Input mismatch on createdAtMillis: left=float64 vs right=int64 (UNALLOWED)
PandasTypeError: Merge key mismatch on createdAtMillis: left=float64 vs right=int64 (UNALLOWED)
INFO:birdwatch.pflip_model:labels before ScoringDriftGuard:
LABEL
CRH 124142
FLIP 50501
Name: count, dtype: int64
INFO:birdwatch.pflip_model:labels after ScoringDriftGuard:
LABEL
CRH 105059
FLIP 50501
Name: count, dtype: int64
INFO:birdwatch.pflip_model:labels after restricting to recent notes:
LABEL
CRH 74987
FLIP 33738
Name: count, dtype: int64
INFO:birdwatch.pflip_model:total ratings included in pflip model: 6944828
INFO:birdwatch.pflip_model:noteInfo summary: 17a54c392ccaf1174346230a91aba110c1444ea45587e11aa93db8ab98318fad
INFO:birdwatch.pflip_model:pflip training data size: 97852
INFO:birdwatch.pflip_model:trainDataFrame summary: bbeb8e07e7766d84ce88950ab885e25be16a46c4b383d2d031e8b832e9c1145b
INFO:birdwatch.pflip_model:pflip validation data size: 10873
INFO:birdwatch.pflip_model:validationDataFrame summary: 77183f09c5fda8dff9ad5f5895fa63746e27f4ae5d7a3a080226b15378d9004b
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/feature_extraction/text.py:525: UserWarning: The parameter 'token_pattern' will not be used since 'tokenizer' is not None'
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/feature_extraction/text.py:525: UserWarning: The parameter 'token_pattern' will not be used since 'tokenizer' is not None'
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 0 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 6 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 7 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 8 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 9 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 10 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 11 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 12 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 13 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 14 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 15 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 1 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 2 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 4 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 5 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 7 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 8 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 9 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 10 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 12 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 13 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 15 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 16 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 17 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 18 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 19 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 20 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 21 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 22 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 23 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 24 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 25 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 26 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 27 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 28 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 29 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 30 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 31 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 33 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 34 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 35 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 36 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 37 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 38 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 39 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 40 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 41 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 42 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 43 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 44 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:239: FutureWarning: In version 1.5 onwards, subsample=200_000 will be used by default. Set subsample explicitly to silence this warning in the mean time. Set subsample=None to disable subsampling explicitly.
warnings.warn(
INFO:birdwatch.pflip_model:Training Results:
INFO:birdwatch.pflip_model:threshold=-7.578478803355093 tpr=0.7369561648333607 fpr=0.24998145318040862 auc=0.8309798386552514
INFO:birdwatch.pflip_model:Validation Results:
INFO:birdwatch.pflip_model:threshold=-7.578478803355093 tpr=0.7100213219616205 fpr=0.2624505928853755 auc=0.8046833670640103
INFO:birdwatch.run_scoring:Final value of OPENBLAS_NUM_THREADS: None
INFO:birdwatch.constants:Fitting pflip model elapsed time: 342.78 secs (5.71 mins)
INFO:birdwatch.run_scoring:We invoked run_scoring and are now in between prescoring and scoring.
INFO:birdwatch.run_scoring:Starting final scoring
INFO:birdwatch.run_scoring:notes total RAM: 122768821 bytes (0.123 GB)
column dtype RAM
0 noteId int64 12432248
1 noteAuthorParticipantId object 12432248
2 createdAtMillis int64 12432248
3 tweetId object 12432248
4 classification object 12432248
5 believable category 1554155
6 harmful category 1554155
7 validationDifficulty category 1554155
8 misleadingOther Int8 3108062
9 misleadingFactualError Int8 3108062
10 misleadingManipulatedMedia Int8 3108062
11 misleadingOutdatedInformation Int8 3108062
12 misleadingMissingImportantContext Int8 3108062
13 misleadingUnverifiedClaimAsFact Int8 3108062
14 misleadingSatire Int8 3108062
15 notMisleadingOther Int8 3108062
16 notMisleadingFactuallyCorrect Int8 3108062
17 notMisleadingOutdatedButNotWhenWritten Int8 3108062
18 notMisleadingClearlySatire Int8 3108062
19 notMisleadingPersonalOpinion Int8 3108062
20 trustworthySources Int8 3108062
21 summary object 12432248
22 isMediaNote Int8 3108062
INFO:birdwatch.run_scoring:ratings total RAM: 11296408047 bytes (11.296 GB)
column dtype RAM
0 noteId int64 951276456
1 raterParticipantId object 951276456
2 createdAtMillis int64 951276456
3 version Int8 237819114
4 agree Int8 237819114
5 disagree Int8 237819114
6 helpful Int8 237819114
7 notHelpful Int8 237819114
8 helpfulnessLevel category 118909689
9 helpfulOther Int8 237819114
10 helpfulInformative Int8 237819114
11 helpfulClear Int8 237819114
12 helpfulEmpathetic Int8 237819114
13 helpfulGoodSources Int8 237819114
14 helpfulUniqueContext Int8 237819114
15 helpfulAddressesClaim Int8 237819114
16 helpfulImportantContext Int8 237819114
17 helpfulUnbiasedLanguage Int8 237819114
18 notHelpfulOther Int8 237819114
19 notHelpfulIncorrect Int8 237819114
20 notHelpfulSourcesMissingOrUnreliable Int8 237819114
21 notHelpfulOpinionSpeculationOrBias Int8 237819114
22 notHelpfulMissingKeyPoints Int8 237819114
23 notHelpfulOutdated Int8 237819114
24 notHelpfulHardToUnderstand Int8 237819114
25 notHelpfulArgumentativeOrBiased Int8 237819114
26 notHelpfulOffTopic Int8 237819114
27 notHelpfulSpamHarassmentOrAbuse Int8 237819114
28 notHelpfulIrrelevantSources Int8 237819114
29 notHelpfulOpinionSpeculation Int8 237819114
30 notHelpfulNoteNotNeeded Int8 237819114
31 ratedOnTweetId int64 951276456
32 helpfulNum float64 951276456
INFO:birdwatch.run_scoring:noteStatusHistory total RAM: 225817062 bytes (0.226 GB)
column dtype RAM
0 noteId int64 14004048
1 noteAuthorParticipantId object 14004048
2 createdAtMillis float64 14004048
3 timestampMillisOfFirstNonNMRStatus float64 14004048
4 firstNonNMRStatus category 1750630
5 timestampMillisOfCurrentStatus float64 14004048
6 currentStatus category 1750638
7 timestampMillisOfLatestNonNMRStatus float64 14004048
8 mostRecentNonNMRStatus category 1750630
9 timestampMillisOfStatusLock float64 14004048
10 lockedStatus category 1750638
11 timestampMillisOfRetroLock float64 14004048
12 currentCoreStatus category 1750638
13 currentExpansionStatus category 1750638
14 currentGroupStatus category 1750638
15 currentDecidedBy category 1751254
16 currentModelingGroup float64 14004048
17 timestampMillisOfMostRecentStatusChange float64 14004048
18 timestampMillisOfNmrDueToMinStableCrhTime float64 14004048
19 currentMultiGroupStatus category 1750638
20 currentModelingMultiGroup float64 14004048
21 timestampMinuteOfFinalScoringOutput float64 14004048
22 timestampMillisOfFirstNmrDueToMinStableCrhTime float64 14004048
23 classification object 14004048
INFO:birdwatch.run_scoring:userEnrollment total RAM: 59362560 bytes (0.059 GB)
column dtype RAM
0 participantId object 8331584
1 enrollmentState object 8331584
2 successfulRatingNeededToEarnIn int64 8331584
3 timestampOfLastStateChange int64 8331584
4 timestampOfLastEarnOut float64 8331584
5 modelingPopulation category 1041472
6 modelingGroup float64 8331584
7 numberOfTimesEarnedOut int64 8331584
INFO:birdwatch.run_scoring:prescoringNoteModelOutput total RAM: 288245304 bytes (0.288 GB)
column dtype RAM
0 noteId object 64054512
1 internalNoteIntercept float32 32027256
2 internalNoteFactor1 float32 32027256
3 scorerName object 64054512
4 lowDiligenceNoteIntercept float32 32027256
5 lowDiligenceNoteFactor1 float32 32027256
6 lowDiligenceNoteInterceptRound2 float32 32027256
INFO:birdwatch.run_scoring:prescoringRaterModelOutput total RAM: 401488938 bytes (0.401 GB)
column dtype RAM
0 raterParticipantId object 31801104
1 internalRaterIntercept float32 15900552
2 internalRaterFactor1 float32 15900552
3 crhCrnhRatioDifference float64 31801104
4 meanNoteScore float64 31801104
5 raterAgreeRatio float64 31801104
6 aboveHelpfulnessThreshold object 31801104
7 scorerName object 31801104
8 internalRaterReputation float32 15900552
9 lowDiligenceRaterIntercept float32 15900552
10 lowDiligenceRaterFactor1 float32 15900552
11 lowDiligenceRaterReputation float32 15900552
12 lowDiligenceRaterInterceptRound2 float32 15900552
13 incorrectTagRatingsMadeByRater Int64 35776242
14 totalRatingsMadeByRater float64 31801104
15 postSelectionValue float64 31801104
INFO:birdwatch.constants:Logging Final Scoring RAM usage elapsed time: 0.06 secs (0.00 mins)
INFO:birdwatch.run_scoring:No previous scored notes passed; scoring all notes.
INFO:birdwatch.run_scoring:2. Rescore all recently created notes if not rescored at the minimum frequency.
INFO:birdwatch.run_scoring:Num notes created recently: 34324
INFO:birdwatch.run_scoring:3. Rescore all notes that flipped status in the previous scoring run. 47
INFO:birdwatch.run_scoring:4. Rescore all recently-flipped notes if not rescored at the minimum frequency.
INFO:birdwatch.run_scoring:Num notes flipped recently: 0
INFO:birdwatch.run_scoring:Num notes not rescored recently enough: 1691896
INFO:birdwatch.run_scoring:5. Rescore all notes that were NMRed due to MinStableCrhTime was not met. 24
INFO:birdwatch.run_scoring:6. Rescore recent unlocked notes that are eligible for locking 13312
INFO:birdwatch.run_scoring:----
Notes to rescore:
* 0 notes with new ratings since last scoring run.
* 30164 notes created recently and not rescored recently enough.
* 47 notes that flipped status in the previous scoring run.
* 0 notes that flipped status recently and not rescored recently enough.
* 24 notes that were NMRed due to MinStableCrhTime was not met.
* 13312 recent notes that are eligible to lock but haven't locked yet.
Overall: 43479 notes to rescore, out of 1554031 total.
----
INFO:birdwatch.constants:Determine which notes to score. elapsed time: 0.07 secs (0.00 mins)
INFO:birdwatch.process_data:Timestamp of latest rating in data: 2025-01-04 01:01:21.258000
INFO:birdwatch.process_data:Timestamp of latest note in data: 2025-01-04 01:01:14.426000
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_status_history.py, in merge_note_info, at line 31: newNoteStatusHistory = oldNoteStatusHistory.merge(
PandasTypeError: Input mismatch on createdAtMillis: left=float64 vs right=int64 (allowed)
PandasTypeError: Output mismatch on createdAtMillis_notes: result=float64 expected=int64 (allowed)
INFO:birdwatch.note_status_history:total notes added to noteStatusHistory: 0
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_status_history.py, in merge_note_info, at line 57: newNoteStatusHistory[[c.noteIdKey, c.createdAtMillisKey]].merge(
PandasTypeError: Input mismatch on createdAtMillis: left=float64 vs right=int64 (allowed)
PandasTypeError: Merge key mismatch on createdAtMillis: left=float64 vs right=int64 (allowed)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/process_data.py, in _filter_misleading_notes, at line 270: ratings = ratings.merge(
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.process_data:Preprocess Data: Filter misleading notes, starting with 118909557 ratings on 1561961 notes
INFO:birdwatch.process_data: Keeping 85792913 ratings on 1051136 misleading notes
INFO:birdwatch.process_data: Keeping 8763256 ratings on 149656 deleted notes that were previously scored (in note status history)
INFO:birdwatch.process_data: Removing 0 ratings on 0 older notes that aren't deleted, but are not-misleading.
INFO:birdwatch.process_data: Removing 0 ratings on 0 notes that were deleted and not in note status history (e.g. old).
INFO:birdwatch.process_data:Num Ratings: 118909557, Num Unique Notes Rated: 1561961, Num Unique Raters: 1040729
INFO:birdwatch.constants:Preprocess smaller dataset since we skipped preprocessing at read time elapsed time: 451.52 secs (7.53 mins)
INFO:birdwatch.topic_model:Assigning notes to topics:
INFO:birdwatch.constants:Get Note Topics: Predict elapsed time: 79.46 secs (1.32 mins)
INFO:birdwatch.topic_model: Notes unassigned due to multiple matches: 1736
INFO:birdwatch.constants:Get Note Topics: Make Seed Labels elapsed time: 83.22 secs (1.39 mins)
INFO:birdwatch.topic_model: Post Topic assignment results: [888954 26545 54077 2347]
INFO:birdwatch.topic_model: Note Topic assignment results:
noteTopic
GazaConflict 112059
UkraineConflict 45446
MessiRonaldo 4027
Name: count, dtype: int64
INFO:birdwatch.constants:Get Note Topics: Merge and assign predictions elapsed time: 1.54 secs (0.03 mins)
INFO:birdwatch.constants:Note Topic Assignment elapsed time: 183.32 secs (3.06 mins)
INFO:birdwatch.run_scoring:Post Selection Similarity Final Scoring: begin with 118909557 ratings.
/home/ubuntu/communitynotes/sourcecode/scoring/post_selection_similarity.py:111: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratingsWithPostSelectionSimilarityValue.sort_values(
/home/ubuntu/communitynotes/sourcecode/scoring/post_selection_similarity.py:114: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratingsWithPostSelectionSimilarityValue.drop_duplicates(
INFO:birdwatch.run_scoring:Post Selection Similarity Final Scoring: 118317340 ratings remaining.
INFO:birdwatch.constants:Post Selection Similarity: Final Scoring elapsed time: 268.67 secs (4.48 mins)
INFO:birdwatch.run_scoring:Starting parallel scorer execution with 23 scorers.
INFO:birdwatch.run_scoring:MFCoreScorer run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.run_scoring:MFExpansionScorer run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.run_scoring:MFExpansionPlusScorer run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.run_scoring:ReputationScorer run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.run_scoring:MFGroupScorer_13 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.run_scoring:MFGroupScorer_12 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.run_scoring:MFExpansionPlusScorer run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFExpansionPlusScorer run_scorer_parallelizable: Loading data elapsed time: 25.69 secs (0.43 mins)
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFExpansionPlusScorer set to: 12
INFO:birdwatch.run_scoring:MFCoreScorer run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFCoreScorer run_scorer_parallelizable: Loading data elapsed time: 25.84 secs (0.43 mins)
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFCoreScorer set to: 12
INFO:birdwatch.run_scoring:MFExpansionScorer run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFExpansionScorer run_scorer_parallelizable: Loading data elapsed time: 25.86 secs (0.43 mins)
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFExpansionScorer set to: 12
INFO:birdwatch.run_scoring:MFGroupScorer_12 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.run_scoring:ReputationScorer run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_12 run_scorer_parallelizable: Loading data elapsed time: 25.82 secs (0.43 mins)
INFO:birdwatch.constants:ReputationScorer run_scorer_parallelizable: Loading data elapsed time: 25.85 secs (0.43 mins)
INFO:birdwatch.scorer:score_final: Torch intra-op parallelism for ReputationScorer set to: 12
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFGroupScorer_12 set to: 4
INFO:birdwatch.run_scoring:MFGroupScorer_13 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_13 run_scorer_parallelizable: Loading data elapsed time: 26.15 secs (0.44 mins)
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFGroupScorer_13 set to: 8
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_12. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.scorer:Filtering ratings for MFExpansionPlusScorer. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.scorer:Filtering ratings for MFCoreScorer. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.scorer:Filtering ratings for ReputationScorer. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.scorer:Filtering ratings for MFExpansionScorer. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_13. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings after group filter: 764628
INFO:birdwatch.scorer:MFGroupScorer_12 Filter input elapsed time: 40.13 secs (0.67 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 458397, Num Unique Notes Rated: 32125, Num Unique Raters: 11120
INFO:birdwatch.scorer:MFGroupScorer_12 Prepare ratings elapsed time: 0.26 secs (0.00 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
INFO:birdwatch.helpfulness_scores:Unique Raters: 4847
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 22716
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 5539
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 4847
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 320638
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 320638
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 4847, Notes: 32100
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 9.988722741433023
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 66.15184650299155
INFO:birdwatch.matrix_factorization:Correcting loss function to simulate rating per note loss ratio = 10.237497984846042
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.matrix_factorization:epoch 0 0.15517044067382812
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10627015680074692
INFO:birdwatch.matrix_factorization:epoch 20 0.10270244628190994
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0666632205247879
INFO:birdwatch.matrix_factorization:epoch 40 0.09921582043170929
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06453729420900345
INFO:birdwatch.matrix_factorization:Num epochs: 51
INFO:birdwatch.matrix_factorization:epoch 51 0.0990028977394104
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06464157998561859
INFO:birdwatch.matrix_factorization:Global Intercept: 0.18789513409137726
INFO:birdwatch.scorer:MFGroupScorer_12 Final helpfulness-filtered MF elapsed time: 2.82 secs (0.05 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_12 final scoring, about to call diligence with 320638 final round ratings.
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:467: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
noteInitState[c.internalNoteInterceptKey] = noteInitState[c.internalNoteInterceptRound2Key]
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:470: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = raterInitState[c.internalRaterInterceptRound2Key]
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
noteId ... internalNoteInterceptRound2
0 1691896445111087535 ... -1.797996
1 1710861026604834963 ... -0.439698
2 1710982119822852314 ... 4.282034
3 1712851765647876276 ... -2.332320
4 1712851975610487188 ... -0.878862
... ... ... ...
31010 1845648344003027373 ... -0.412559
31011 1864044809939243091 ... -0.362962
31012 1714417073764421719 ... -0.457417
31013 1797659363445788823 ... -0.535873
31014 1828127526306169170 ... -0.535034
[31015 rows x 4 columns],
raterInitState:
raterParticipantId ... internalRaterInterceptRound2
0 00029D1FDD352D79B5073189C3F2BDF6377581F50D66C1... ... NaN
1 00053CDCAC04E3692F4A01305C8F3D093CCE221157D539... ... NaN
2 0005983E6E18862483AB372C5B61FEBC1F8A573E7701F9... ... NaN
3 000957CF1421B543AEAFEBF835033D3BA5FB1B99FB0AF8... ... NaN
4 001041D12A03F39CCB40BEA9458C469323254EEC76348B... ... -0.186429
... ... ... ...
22711 FFE87CF4860C52665B228E9F345BB3EE183994416FA6D7... ... NaN
22712 FFEEE02BCED1134EB1C57875779C03F2135B72BB4C8E7F... ... 0.387092
22713 FFF3E935633C6870DE7674D0681C5821BC408073C84A36... ... NaN
22714 FFFA40CBF0CC13E71072BFE89E80372A5907BD9D2EDA54... ... NaN
22715 FFFA43EFB0AAB3BFD273666FF123BFE69D863B9A2F5E44... ... NaN
[22716 rows x 5 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 4847, vs. num we are initializing: 22716
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 4847
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 4847, vs. num we are initializing: 22716
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 4847
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterReputation:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 4847, vs. num we are initializing: 22716
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterReputations: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterReputations: 4847
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 32100, vs. num we are initializing: 31015
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteFactor1s: 31505
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteFactor1s: 595
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 32100, vs. num we are initializing: 31015
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteIntercepts: 31505
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteIntercepts: 595
INFO:birdwatch.reputation_matrix_factorization:Final scoring, initial round fitting reputation MF (equivalent to Round 2 in Prescoring - learn note factor)
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=5.860401 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.642860 | time=0.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.612004 | time=0.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.608824 | time=0.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.608517 | time=1.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=140 | loss=2.608467 | time=1.4s
INFO:birdwatch.reputation_matrix_factorization:Final scoring, final round fitting reputation MF: learn just note intercept
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:505: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = savedFinalRoundPrescoringRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 4847, vs. num we are initializing: 22716
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 4847
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.542247 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.480972 | time=0.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.479966 | time=0.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.479932 | time=0.8s
INFO:birdwatch.diligence_model:Low diligence final loss: 0.4799
INFO:birdwatch.mf_base_scorer:diligenceNP cols: Index(['noteId', 'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'], dtype='object')
INFO:birdwatch.mf_base_scorer:np cols: Index(['noteId', 'noteIndex', 'internalNoteIntercept', 'internalNoteFactor1',
'internalNoteFactor1_max', 'internalNoteFactor1_median',
'internalNoteFactor1_min', 'internalNoteFactor1_refit_orig',
'internalNoteIntercept_median', 'internalNoteIntercept_refit_orig',
'ratingCount_all', 'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_12 Low Diligence Reputation Model elapsed time: 2.76 secs (0.05 mins)
INFO:birdwatch.mf_base_scorer:About to call compute_scored_notes with MFGroupScorer_12
INFO:birdwatch.scorer: Ratings after group filter: 35062479
INFO:birdwatch.scorer:MFGroupScorer_13 Filter input elapsed time: 47.57 secs (0.79 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer: Ratings after group filter: 118317340
INFO:birdwatch.scorer:MFExpansionPlusScorer Filter input elapsed time: 49.35 secs (0.82 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 494: noteStats = tagAggregates.merge(noteStats, on=c.noteIdKey, how="outer")
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:compute_scored_notes: compute tag aggregates elapsed time: 2.61 secs (0.04 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:82: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals.drop(columns_to_drop, inplace=True, axis=1)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:84: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = (
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:91: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:95: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:99: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey] = ratings_w_user_totals[
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 499: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on num_voters_interval: result=float64 expected=int64 (allowed)
INFO:birdwatch.constants:compute_scored_notes: compute incorrect aggregates elapsed time: 2.76 secs (0.05 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.scorer: Ratings after group filter: 102142736
INFO:birdwatch.scorer:MFCoreScorer Filter input elapsed time: 56.82 secs (0.95 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.73 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.64 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.scorer: Ratings after group filter: 102142736
INFO:birdwatch.scorer:ReputationScorer Filter input elapsed time: 58.71 secs (0.98 mins)
INFO:birdwatch.reputation_scorer:seeding with 0
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.71 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRHInertia (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRHInertia (v1.0) elapsed time: 0.95 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRHInertia (v1.0) elapsed time: 1.60 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: TagFilter (v1.0)
INFO:birdwatch.scorer: Ratings after group filter: 118315149
INFO:birdwatch.scorer:MFExpansionScorer Filter input elapsed time: 61.57 secs (1.03 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.scoring_rules:Candidate notes prior to tag filtering: 1748648
INFO:birdwatch.scoring_rules:Checking note tags:
INFO:birdwatch.scoring_rules:notHelpfulOther
INFO:birdwatch.scoring_rules:notHelpfulIncorrect
INFO:birdwatch.scoring_rules:notHelpfulSourcesMissingOrUnreliable
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculationOrBias
INFO:birdwatch.scoring_rules:notHelpfulMissingKeyPoints
INFO:birdwatch.scoring_rules:notHelpfulOutdated
INFO:birdwatch.scoring_rules:notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:outlier filtering disabled for tag: notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:notHelpfulArgumentativeOrBiased
INFO:birdwatch.scoring_rules:notHelpfulOffTopic
INFO:birdwatch.scoring_rules:notHelpfulSpamHarassmentOrAbuse
INFO:birdwatch.scoring_rules:notHelpfulIrrelevantSources
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculation
INFO:birdwatch.scoring_rules:notHelpfulNoteNotNeeded
INFO:birdwatch.scoring_rules:Total {note, tag} pairs where tag filter logic triggered: 895
INFO:birdwatch.scoring_rules:Total unique notes impacted by tag filtering: 549
INFO:birdwatch.constants:Calling score_notes: TagFilter (v1.0) elapsed time: 2.94 secs (0.05 mins)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/scoring_rules.py, in apply_scoring_rules, at line 1099: noteColumns = noteColumns.merge(
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:Applying scoring rule: TagFilter (v1.0) elapsed time: 3.58 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: CRHSuperThreshold (v1.0)
INFO:birdwatch.constants:Calling score_notes: CRHSuperThreshold (v1.0) elapsed time: 0.12 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: CRHSuperThreshold (v1.0) elapsed time: 0.77 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: ElevatedCRHInertia (v1.0)
INFO:birdwatch.constants:Calling score_notes: ElevatedCRHInertia (v1.0) elapsed time: 1.08 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: ElevatedCRHInertia (v1.0) elapsed time: 1.67 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterIncorrect (v1.0)
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 34299271, Num Unique Notes Rated: 609958, Num Unique Raters: 215930
INFO:birdwatch.scorer:MFGroupScorer_13 Prepare ratings elapsed time: 19.93 secs (0.33 mins)
INFO:birdwatch.scoring_rules:Total notes impacted by incorrect filtering: 180
INFO:birdwatch.constants:Calling score_notes: FilterIncorrect (v1.0) elapsed time: 2.85 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterIncorrect (v1.0) elapsed time: 3.45 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLowDiligence (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by low diligence filtering: 7284
INFO:birdwatch.constants:Calling score_notes: FilterLowDiligence (v1.0) elapsed time: 2.78 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLowDiligence (v1.0) elapsed time: 3.39 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLargeFactor (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by large factor filtering: 20
INFO:birdwatch.constants:Calling score_notes: FilterLargeFactor (v1.0) elapsed time: 0.82 secs (0.01 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLargeFactor (v1.0) elapsed time: 1.44 secs (0.02 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
INFO:birdwatch.helpfulness_scores:Unique Raters: 103061
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 222125
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 109801
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 101479596, Num Unique Notes Rated: 1207469, Num Unique Raters: 784040
INFO:birdwatch.scorer:MFCoreScorer Prepare ratings elapsed time: 54.52 secs (0.91 mins)
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 103061
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 19815879
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 19815879
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 38.61 secs (0.64 mins)
INFO:birdwatch.mf_base_scorer:sn cols: Index(['noteId', 'ratingWeight', 'notHelpfulOtherAdjusted',
'notHelpfulIncorrectAdjusted',
'notHelpfulSourcesMissingOrUnreliableAdjusted',
'notHelpfulOpinionSpeculationOrBiasAdjusted',
'notHelpfulMissingKeyPointsAdjusted', 'notHelpfulOutdatedAdjusted',
'notHelpfulHardToUnderstandAdjusted',
'notHelpfulArgumentativeOrBiasedAdjusted', 'notHelpfulOffTopicAdjusted',
'notHelpfulSpamHarassmentOrAbuseAdjusted',
'notHelpfulIrrelevantSourcesAdjusted',
'notHelpfulOpinionSpeculationAdjusted',
'notHelpfulNoteNotNeededAdjusted', 'notHelpfulOtherAdjustedRatio',
'notHelpfulIncorrectAdjustedRatio',
'notHelpfulSourcesMissingOrUnreliableAdjustedRatio',
'notHelpfulOpinionSpeculationOrBiasAdjustedRatio',
'notHelpfulMissingKeyPointsAdjustedRatio',
'notHelpfulOutdatedAdjustedRatio',
'notHelpfulHardToUnderstandAdjustedRatio',
'notHelpfulArgumentativeOrBiasedAdjustedRatio',
'notHelpfulOffTopicAdjustedRatio',
'notHelpfulSpamHarassmentOrAbuseAdjustedRatio',
'notHelpfulIrrelevantSourcesAdjustedRatio',
'notHelpfulOpinionSpeculationAdjustedRatio',
'notHelpfulNoteNotNeededAdjustedRatio', 'helpfulOther',
'helpfulInformative', 'helpfulClear', 'helpfulEmpathetic',
'helpfulGoodSources', 'helpfulUniqueContext', 'helpfulAddressesClaim',
'helpfulImportantContext', 'helpfulUnbiasedLanguage', 'notHelpfulOther',
'notHelpfulIncorrect', 'notHelpfulSourcesMissingOrUnreliable',
'notHelpfulOpinionSpeculationOrBias', 'notHelpfulMissingKeyPoints',
'notHelpfulOutdated', 'notHelpfulHardToUnderstand',
'notHelpfulArgumentativeOrBiased', 'notHelpfulOffTopic',
'notHelpfulSpamHarassmentOrAbuse', 'notHelpfulIrrelevantSources',
'notHelpfulOpinionSpeculation', 'notHelpfulNoteNotNeeded', 'numRatings',
'noteAuthorParticipantId', 'classification', 'currentStatus',
'internalNoteIntercept', 'internalNoteFactor1',
'lowDiligenceNoteIntercept', 'internalNoteFactor1_max',
'internalNoteFactor1_median', 'internalNoteFactor1_min',
'internalNoteFactor1_refit_orig', 'internalNoteIntercept_median',
'internalNoteIntercept_refit_orig', 'ratingCount_all',
'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'notHelpfulIncorrect_interval', 'p_incorrect_user_interval',
'num_voters_interval', 'tf_idf_incorrect_interval',
'internalRatingStatus', 'internalActiveRules', 'activeFilterTags',
'crhBool', 'crnhBool', 'awaitingBool'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_12 Final compute scored notes elapsed time: 68.30 secs (1.14 mins)
INFO:birdwatch.scorer:Postprocessing output for MFGroupScorer_12
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 117720044, Num Unique Notes Rated: 1298934, Num Unique Raters: 1040518
INFO:birdwatch.scorer:MFExpansionPlusScorer Prepare ratings elapsed time: 68.94 secs (1.15 mins)
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 103061, Notes: 609122
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 32.53187210443885
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 192.27330415967242
INFO:birdwatch.matrix_factorization:Correcting loss function to simulate rating per note loss ratio = 32.61067555088812
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 117717845, Num Unique Notes Rated: 1298931, Num Unique Raters: 1040483
INFO:birdwatch.scorer:MFExpansionScorer Prepare ratings elapsed time: 64.44 secs (1.07 mins)
INFO:birdwatch.matrix_factorization:epoch 0 0.12420346587896347
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10024061053991318
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 100691291, Num Unique Notes Rated: 1205894, Num Unique Raters: 590255
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
INFO:birdwatch.matrix_factorization:epoch 20 0.10472938418388367
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07926952838897705
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
INFO:birdwatch.scorer: Original noteScores length: 1750506
INFO:birdwatch.scorer: Final noteScores length: 4928
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in score_final, at line 1190: noteScores = noteScores.merge(
PandasTypeError: Output mismatch on numFinalRoundRatings: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_12 Postprocess output elapsed time: 51.87 secs (0.86 mins)
INFO:birdwatch.run_scoring:MFGroupScorer_11 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.matrix_factorization:epoch 40 0.10362616181373596
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07790735363960266
INFO:birdwatch.run_scoring:MFGroupScorer_11 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_11 run_scorer_parallelizable: Loading data elapsed time: 22.29 secs (0.37 mins)
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFGroupScorer_11 set to: 4
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_11. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.matrix_factorization:Num epochs: 60
INFO:birdwatch.matrix_factorization:epoch 60 0.10348565876483917
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07774236053228378
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1557331085205078
INFO:birdwatch.scorer:MFGroupScorer_13 Final helpfulness-filtered MF elapsed time: 86.70 secs (1.45 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_13 final scoring, about to call diligence with 19815879 final round ratings.
INFO:birdwatch.helpfulness_scores:Unique Raters: 377369
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 574793
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 408324
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:467: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
noteInitState[c.internalNoteInterceptKey] = noteInitState[c.internalNoteInterceptRound2Key]
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:470: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = raterInitState[c.internalRaterInterceptRound2Key]
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
noteId ... internalNoteInterceptRound2
0 1549781045201047554 ... 0.581661
1 1592925068132245504 ... -0.313237
2 1593079642092617729 ... 0.906070
3 1595167355637796876 ... -0.465690
4 1597230938316054532 ... -1.548695
... ... ... ...
607514 1855061828675498184 ... -0.216159
607515 1663589142351970305 ... -0.306378
607516 1741105701643268121 ... 1.283426
607517 1694299885778981367 ... -0.176601
607518 1783727968046432453 ... -0.203176
[607519 rows x 4 columns],
raterInitState:
raterParticipantId ... internalRaterInterceptRound2
0 000045A5FA0CF004F68CBF2913506C37D540CF48522D33... ... -0.486221
1 00018DBB934257251EBCEE91D0722C71B7DD592A571398... ... NaN
2 00022C96980039352E2D04B5E533090FA8BA333F87C5EB... ... 0.249502
3 0002725E706CF18C040E21F30CE2D39994513C3BB8CF58... ... NaN
4 000274A83456E40A03B81628F432D06A3506E28C77FEA8... ... NaN
... ... ... ...
222120 FFFEB058BCC25277E2662DD3E8C0506FB1B23BA4D965EA... ... NaN
222121 FFFEB27D6E27351D14EB43777F265F694744ABB4B3B7AD... ... 0.311522
222122 FFFF0C7BF4089C6436CAB332B309A1A81C21E11CD61CE4... ... NaN
222123 FFFF3B1E5FB7927B196BCC7753E5CE5B2E64AFA90099E0... ... NaN
222124 FFFF7E0B3ADB6FC5FB42B0F01FFD24495410C1AE4AC986... ... -0.133762
[222125 rows x 5 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 103061, vs. num we are initializing: 222125
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 103061
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 103061, vs. num we are initializing: 222125
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 103061
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterReputation:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 103061, vs. num we are initializing: 222125
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterReputations: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterReputations: 103061
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 609122, vs. num we are initializing: 607519
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteFactor1s: 570354
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteFactor1s: 38768
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 609122, vs. num we are initializing: 607519
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteIntercepts: 570354
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteIntercepts: 38768
INFO:birdwatch.reputation_matrix_factorization:Final scoring, initial round fitting reputation MF (equivalent to Round 2 in Prescoring - learn note factor)
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=4.497056 | time=0.1s
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings after group filter: 1735379
INFO:birdwatch.scorer:MFGroupScorer_11 Filter input elapsed time: 39.21 secs (0.65 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 1118923, Num Unique Notes Rated: 93062, Num Unique Raters: 11799
INFO:birdwatch.scorer:MFGroupScorer_11 Prepare ratings elapsed time: 0.55 secs (0.01 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
INFO:birdwatch.helpfulness_scores:Unique Raters: 489800
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 712511
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 542394
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 377369
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 52237974
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 52237974
INFO:birdwatch.helpfulness_scores:Unique Raters: 6552
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 48937
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 7130
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 6552
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 731329
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 731329
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 6552, Notes: 92847
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 7.876711148448523
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 111.61920024420024
INFO:birdwatch.matrix_factorization:Correcting loss function to simulate rating per note loss ratio = 7.9375824367485315
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.matrix_factorization:epoch 0 0.1410684585571289
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09966675192117691
INFO:birdwatch.matrix_factorization:epoch 20 0.10076995193958282
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06930522620677948
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.434547 | time=12.5s
INFO:birdwatch.matrix_factorization:epoch 40 0.09890143573284149
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06741584092378616
INFO:birdwatch.helpfulness_scores:Unique Raters: 489451
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 712504
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 542045
INFO:birdwatch.matrix_factorization:epoch 60 0.09864601492881775
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06716492027044296
INFO:birdwatch.matrix_factorization:epoch 80 0.09861166775226593
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06712664663791656
INFO:birdwatch.matrix_factorization:Num epochs: 93
INFO:birdwatch.matrix_factorization:epoch 93 0.09860806167125702
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06712305545806885
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1667405664920807
INFO:birdwatch.scorer:MFGroupScorer_11 Final helpfulness-filtered MF elapsed time: 5.32 secs (0.09 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_11 final scoring, about to call diligence with 731329 final round ratings.
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:467: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
noteInitState[c.internalNoteInterceptKey] = noteInitState[c.internalNoteInterceptRound2Key]
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:470: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = raterInitState[c.internalRaterInterceptRound2Key]
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
noteId internalNoteIntercept internalNoteFactor1 \
0 1643057880793325568 2.275487 3.530573
1 1660244070621380610 0.605727 -2.286807
2 1681713296271892480 -6.667027 1.022068
3 1686264916682919936 2.253821 -1.295951
4 1686753388883546113 -0.822459 2.509581
... ... ... ...
91732 1819830116945387728 -0.451016 -0.844434
91733 1819849846179627161 -0.449976 -0.844213
91734 1819925754207150395 -0.449914 -0.845834
91735 1870385083439513634 2.137305 2.945505
91736 1714789934614098338 -0.229163 0.925463
internalNoteInterceptRound2
0 2.275487
1 0.605727
2 -6.667027
3 2.253821
4 -0.822459
... ...
91732 -0.451016
91733 -0.449976
91734 -0.449914
91735 2.137305
91736 -0.229163
[91737 rows x 4 columns],
raterInitState:
raterParticipantId \
0 000045A5FA0CF004F68CBF2913506C37D540CF48522D33...
1 00018DBB934257251EBCEE91D0722C71B7DD592A571398...
2 0002725E706CF18C040E21F30CE2D39994513C3BB8CF58...
3 00029D1FDD352D79B5073189C3F2BDF6377581F50D66C1...
4 0002D1E11A8EA1E4B25048FA9D117406CE9EB1D3143BC9...
... ...
48932 FFFA43EFB0AAB3BFD273666FF123BFE69D863B9A2F5E44...
48933 FFFA49720F254411E1F79CA757C403F0A0217240BC4922...
48934 FFFC011F23086D8153F0A3FF336F33EE80521EC35F9ACD...
48935 FFFDAB98EE31EC0CC51169937F859D5B676870C6470C19...
48936 FFFEB058BCC25277E2662DD3E8C0506FB1B23BA4D965EA...
internalRaterIntercept internalRaterFactor1 internalRaterReputation \
0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
... ... ... ...
48932 NaN NaN NaN
48933 0.052763 0.571174 0.795266
48934 NaN NaN NaN
48935 NaN NaN NaN
48936 NaN NaN NaN
internalRaterInterceptRound2
0 NaN
1 NaN
2 NaN
3 NaN
4 NaN
... ...
48932 NaN
48933 0.052763
48934 NaN
48935 NaN
48936 NaN
[48937 rows x 5 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 6552, vs. num we are initializing: 48937
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 6552
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 6552, vs. num we are initializing: 48937
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 6552
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterReputation:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 6552, vs. num we are initializing: 48937
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterReputations: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterReputations: 6552
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 92847, vs. num we are initializing: 91737
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteFactor1s: 90283
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteFactor1s: 2564
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 92847, vs. num we are initializing: 91737
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteIntercepts: 90283
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteIntercepts: 2564
INFO:birdwatch.reputation_matrix_factorization:Final scoring, initial round fitting reputation MF (equivalent to Round 2 in Prescoring - learn note factor)
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=7.302128 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
noteId ... internalNoteInterceptRound2
0 1352796878438424576 ... -0.060955
1 1353415873227177985 ... 0.048938
2 1354586938863443971 ... NaN
3 1354588003075764229 ... NaN
4 1354588172659920899 ... NaN
... ... ... ...
1750501 1875355579318722848 ... NaN
1750502 1875355783946293371 ... NaN
1750503 1875355865437315075 ... NaN
1750504 1875355877789880344 ... NaN
1750505 1875356460340679029 ... NaN
[1750506 rows x 7 columns],
raterInitState:
raterParticipantId ... internalRaterInterceptRound2
0 0000010BB832A9CFDF102BF7B66896FA987C80FBB61EF6... ... 0.127391
1 000011269AD6F327AED0F4086A732B4052F9D28E8791E1... ... 0.090071
2 0000315D36021A528D85155729DDBF2E299BB8C3040878... ... 0.143150
3 000045A5FA0CF004F68CBF2913506C37D540CF48522D33... ... -0.103966
4 00005300B9017670433392BF6767238D54E058EC25D5C5... ... 0.170236
... ... ... ...
590250 FFFFAB2FDBC1968F4CFE97A86D88963D702B636365B6CD... ... 0.182920
590251 FFFFBBAB3C66ABB4DBC2A3B486C3C673345C89B5858465... ... -0.063934
590252 FFFFC819886B2F837503D840D59EE8321A835AAF2B5C1E... ... -0.194488
590253 FFFFD54D8094D7620A7C3E162F98198FBDBD3401A4F2FB... ... -0.394162
590254 FFFFFE8909485374E33854B934713713CAC93CDB50C9D0... ... 0.005964
[590255 rows x 16 columns]
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.707204 | time=0.7s
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 590255, vs. num we are initializing: 590255
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.659630 | time=1.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.652598 | time=2.0s
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 590255
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.651290 | time=2.7s
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 590255, vs. num we are initializing: 590255
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=2.650836 | time=3.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=2.650623 | time=4.0s
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 590255
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=2.650513 | time=4.7s
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterReputation:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 590255, vs. num we are initializing: 590255
INFO:birdwatch.reputation_matrix_factorization:epoch=230 | loss=2.650469 | time=5.1s
INFO:birdwatch.reputation_matrix_factorization:Final scoring, final round fitting reputation MF: learn just note intercept
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:505: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = savedFinalRoundPrescoringRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 6552, vs. num we are initializing: 48937
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 6552
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.567179 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.474111 | time=0.7s
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterReputations: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterReputations: 590255
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.472549 | time=1.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.472500 | time=1.6s
INFO:birdwatch.diligence_model:Low diligence final loss: 0.4725
INFO:birdwatch.mf_base_scorer:diligenceNP cols: Index(['noteId', 'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'], dtype='object')
INFO:birdwatch.mf_base_scorer:np cols: Index(['noteId', 'noteIndex', 'internalNoteIntercept', 'internalNoteFactor1',
'internalNoteFactor1_max', 'internalNoteFactor1_median',
'internalNoteFactor1_min', 'internalNoteFactor1_refit_orig',
'internalNoteIntercept_median', 'internalNoteIntercept_refit_orig',
'ratingCount_all', 'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_11 Low Diligence Reputation Model elapsed time: 8.20 secs (0.14 mins)
INFO:birdwatch.mf_base_scorer:About to call compute_scored_notes with MFGroupScorer_11
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.407713 | time=25.0s
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 1205894, vs. num we are initializing: 1750506
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteFactor1s: 1149359
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteFactor1s: 56535
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 1205894, vs. num we are initializing: 1750506
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteIntercepts: 1149359
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteIntercepts: 56535
INFO:birdwatch.reputation_matrix_factorization:Final scoring, initial round fitting reputation MF (equivalent to Round 2 in Prescoring - learn note factor)
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.204937 | time=0.7s
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 494: noteStats = tagAggregates.merge(noteStats, on=c.noteIdKey, how="outer")
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:compute_scored_notes: compute tag aggregates elapsed time: 3.67 secs (0.06 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:82: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals.drop(columns_to_drop, inplace=True, axis=1)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:84: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = (
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:91: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:95: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:99: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey] = ratings_w_user_totals[
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 499: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on num_voters_interval: result=float64 expected=int64 (allowed)
INFO:birdwatch.constants:compute_scored_notes: compute incorrect aggregates elapsed time: 3.27 secs (0.05 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.61 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.12 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.405916 | time=37.3s
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.55 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRHInertia (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRHInertia (v1.0) elapsed time: 0.92 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRHInertia (v1.0) elapsed time: 1.50 secs (0.02 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: TagFilter (v1.0)
INFO:birdwatch.scoring_rules:Candidate notes prior to tag filtering: 1745145
INFO:birdwatch.scoring_rules:Checking note tags:
INFO:birdwatch.scoring_rules:notHelpfulOther
INFO:birdwatch.scoring_rules:notHelpfulIncorrect
INFO:birdwatch.scoring_rules:notHelpfulSourcesMissingOrUnreliable
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculationOrBias
INFO:birdwatch.scoring_rules:notHelpfulMissingKeyPoints
INFO:birdwatch.scoring_rules:notHelpfulOutdated
INFO:birdwatch.scoring_rules:notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:outlier filtering disabled for tag: notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:notHelpfulArgumentativeOrBiased
INFO:birdwatch.scoring_rules:notHelpfulOffTopic
INFO:birdwatch.scoring_rules:notHelpfulSpamHarassmentOrAbuse
INFO:birdwatch.scoring_rules:notHelpfulIrrelevantSources
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculation
INFO:birdwatch.scoring_rules:notHelpfulNoteNotNeeded
INFO:birdwatch.scoring_rules:Total {note, tag} pairs where tag filter logic triggered: 1712
INFO:birdwatch.scoring_rules:Total unique notes impacted by tag filtering: 1179
INFO:birdwatch.constants:Calling score_notes: TagFilter (v1.0) elapsed time: 2.85 secs (0.05 mins)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/scoring_rules.py, in apply_scoring_rules, at line 1099: noteColumns = noteColumns.merge(
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:Applying scoring rule: TagFilter (v1.0) elapsed time: 3.44 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: CRHSuperThreshold (v1.0)
INFO:birdwatch.constants:Calling score_notes: CRHSuperThreshold (v1.0) elapsed time: 0.13 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: CRHSuperThreshold (v1.0) elapsed time: 0.72 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: ElevatedCRHInertia (v1.0)
INFO:birdwatch.reputation_matrix_factorization:epoch=110 | loss=2.405834 | time=45.5s
INFO:birdwatch.reputation_matrix_factorization:Final scoring, final round fitting reputation MF: learn just note intercept
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:505: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = savedFinalRoundPrescoringRaterIntercept
INFO:birdwatch.constants:Calling score_notes: ElevatedCRHInertia (v1.0) elapsed time: 0.95 secs (0.02 mins)
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 103061, vs. num we are initializing: 222125
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 103061
INFO:birdwatch.constants:Applying scoring rule: ElevatedCRHInertia (v1.0) elapsed time: 1.50 secs (0.02 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterIncorrect (v1.0)
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 489800
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 61628324
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 61628324
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.266507 | time=0.2s
INFO:birdwatch.scoring_rules:Total notes impacted by incorrect filtering: 279
INFO:birdwatch.constants:Calling score_notes: FilterIncorrect (v1.0) elapsed time: 2.77 secs (0.05 mins)
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 489451
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 61502082
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 61502082
INFO:birdwatch.constants:Applying scoring rule: FilterIncorrect (v1.0) elapsed time: 3.36 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLowDiligence (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by low diligence filtering: 17966
INFO:birdwatch.constants:Calling score_notes: FilterLowDiligence (v1.0) elapsed time: 2.78 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLowDiligence (v1.0) elapsed time: 3.41 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLargeFactor (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by large factor filtering: 134
INFO:birdwatch.constants:Calling score_notes: FilterLargeFactor (v1.0) elapsed time: 0.85 secs (0.01 mins)
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 377369, Notes: 1205353
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.constants:Applying scoring rule: FilterLargeFactor (v1.0) elapsed time: 1.48 secs (0.02 mins)
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.257681 | time=13.5s
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 43.338319977633105
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 138.4267759142908
INFO:birdwatch.matrix_factorization:Correcting loss function to simulate rating per note loss ratio = 43.389993420987054
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.matrix_factorization:epoch 0 0.12316302955150604
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09815917909145355
INFO:birdwatch.reputation_matrix_factorization:epoch=050 | loss=0.257596 | time=21.9s
INFO:birdwatch.diligence_model:Low diligence final loss: 0.2576
INFO:birdwatch.mf_base_scorer:diligenceNP cols: Index(['noteId', 'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'], dtype='object')
INFO:birdwatch.mf_base_scorer:np cols: Index(['noteId', 'noteIndex', 'internalNoteIntercept', 'internalNoteFactor1',
'internalNoteFactor1_max', 'internalNoteFactor1_median',
'internalNoteFactor1_min', 'internalNoteFactor1_refit_orig',
'internalNoteIntercept_median', 'internalNoteIntercept_refit_orig',
'ratingCount_all', 'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_13 Low Diligence Reputation Model elapsed time: 92.00 secs (1.53 mins)
INFO:birdwatch.mf_base_scorer:About to call compute_scored_notes with MFGroupScorer_13
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.109874 | time=57.9s
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 41.37 secs (0.69 mins)
INFO:birdwatch.mf_base_scorer:sn cols: Index(['noteId', 'ratingWeight', 'notHelpfulOtherAdjusted',
'notHelpfulIncorrectAdjusted',
'notHelpfulSourcesMissingOrUnreliableAdjusted',
'notHelpfulOpinionSpeculationOrBiasAdjusted',
'notHelpfulMissingKeyPointsAdjusted', 'notHelpfulOutdatedAdjusted',
'notHelpfulHardToUnderstandAdjusted',
'notHelpfulArgumentativeOrBiasedAdjusted', 'notHelpfulOffTopicAdjusted',
'notHelpfulSpamHarassmentOrAbuseAdjusted',
'notHelpfulIrrelevantSourcesAdjusted',
'notHelpfulOpinionSpeculationAdjusted',
'notHelpfulNoteNotNeededAdjusted', 'notHelpfulOtherAdjustedRatio',
'notHelpfulIncorrectAdjustedRatio',
'notHelpfulSourcesMissingOrUnreliableAdjustedRatio',
'notHelpfulOpinionSpeculationOrBiasAdjustedRatio',
'notHelpfulMissingKeyPointsAdjustedRatio',
'notHelpfulOutdatedAdjustedRatio',
'notHelpfulHardToUnderstandAdjustedRatio',
'notHelpfulArgumentativeOrBiasedAdjustedRatio',
'notHelpfulOffTopicAdjustedRatio',
'notHelpfulSpamHarassmentOrAbuseAdjustedRatio',
'notHelpfulIrrelevantSourcesAdjustedRatio',
'notHelpfulOpinionSpeculationAdjustedRatio',
'notHelpfulNoteNotNeededAdjustedRatio', 'helpfulOther',
'helpfulInformative', 'helpfulClear', 'helpfulEmpathetic',
'helpfulGoodSources', 'helpfulUniqueContext', 'helpfulAddressesClaim',
'helpfulImportantContext', 'helpfulUnbiasedLanguage', 'notHelpfulOther',
'notHelpfulIncorrect', 'notHelpfulSourcesMissingOrUnreliable',
'notHelpfulOpinionSpeculationOrBias', 'notHelpfulMissingKeyPoints',
'notHelpfulOutdated', 'notHelpfulHardToUnderstand',
'notHelpfulArgumentativeOrBiased', 'notHelpfulOffTopic',
'notHelpfulSpamHarassmentOrAbuse', 'notHelpfulIrrelevantSources',
'notHelpfulOpinionSpeculation', 'notHelpfulNoteNotNeeded', 'numRatings',
'noteAuthorParticipantId', 'classification', 'currentStatus',
'internalNoteIntercept', 'internalNoteFactor1',
'lowDiligenceNoteIntercept', 'internalNoteFactor1_max',
'internalNoteFactor1_median', 'internalNoteFactor1_min',
'internalNoteFactor1_refit_orig', 'internalNoteIntercept_median',
'internalNoteIntercept_refit_orig', 'ratingCount_all',
'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'notHelpfulIncorrect_interval', 'p_incorrect_user_interval',
'num_voters_interval', 'tf_idf_incorrect_interval',
'internalRatingStatus', 'internalActiveRules', 'activeFilterTags',
'crhBool', 'crnhBool', 'awaitingBool'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_11 Final compute scored notes elapsed time: 72.61 secs (1.21 mins)
INFO:birdwatch.scorer:Postprocessing output for MFGroupScorer_11
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 489451, Notes: 1296961
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 489800, Notes: 1296988
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 47.42014756033527
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 125.65523821587861
INFO:birdwatch.matrix_factorization:Correcting loss function to simulate rating per note loss ratio = 47.486095560494
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 47.51649514104988
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 125.82344630461412
INFO:birdwatch.matrix_factorization:Correcting loss function to simulate rating per note loss ratio = 47.582615745745436
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.matrix_factorization:epoch 0 0.12271592020988464
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09755367785692215
INFO:birdwatch.matrix_factorization:epoch 0 0.1227373406291008
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09757845848798752
INFO:birdwatch.matrix_factorization:epoch 20 0.10948103666305542
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08243284374475479
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.108417 | time=116.4s
INFO:birdwatch.scorer: Original noteScores length: 1750506
INFO:birdwatch.scorer: Final noteScores length: 8643
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in score_final, at line 1190: noteScores = noteScores.merge(
PandasTypeError: Output mismatch on numFinalRoundRatings: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_11 Postprocess output elapsed time: 61.51 secs (1.03 mins)
INFO:birdwatch.run_scoring:MFGroupScorer_10 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.matrix_factorization:epoch 40 0.10880401730537415
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0817750096321106
INFO:birdwatch.matrix_factorization:epoch 20 0.11040870100259781
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08333969861268997
INFO:birdwatch.matrix_factorization:epoch 20 0.1104157343506813
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08334934711456299
INFO:birdwatch.run_scoring:MFGroupScorer_10 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_10 run_scorer_parallelizable: Loading data elapsed time: 23.44 secs (0.39 mins)
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFGroupScorer_10 set to: 4
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 494: noteStats = tagAggregates.merge(noteStats, on=c.noteIdKey, how="outer")
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:compute_scored_notes: compute tag aggregates elapsed time: 77.05 secs (1.28 mins)
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_10. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.matrix_factorization:Num epochs: 49
INFO:birdwatch.matrix_factorization:epoch 49 0.10874594748020172
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08173158019781113
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1698254644870758
INFO:birdwatch.scorer:MFCoreScorer Final helpfulness-filtered MF elapsed time: 183.04 secs (3.05 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=0.108362 | time=176.9s
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings after group filter: 993406
INFO:birdwatch.scorer:MFGroupScorer_10 Filter input elapsed time: 41.05 secs (0.68 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 511115, Num Unique Notes Rated: 45202, Num Unique Raters: 9504
INFO:birdwatch.scorer:MFGroupScorer_10 Prepare ratings elapsed time: 0.28 secs (0.00 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
INFO:birdwatch.helpfulness_scores:Unique Raters: 4776
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 30734
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 5431
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 4776
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 347745
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 347745
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 4776, Notes: 45105
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 7.709677419354839
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 72.8109296482412
INFO:birdwatch.matrix_factorization:Correcting loss function to simulate rating per note loss ratio = 7.851096856666743
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.matrix_factorization:epoch 0 0.1504622846841812
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10350238531827927
INFO:birdwatch.matrix_factorization:epoch 20 0.09826453030109406
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.063314288854599
INFO:birdwatch.matrix_factorization:epoch 40 0.09529581665992737
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.061294954270124435
INFO:birdwatch.matrix_factorization:epoch 60 0.09498219192028046
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06137792766094208
INFO:birdwatch.matrix_factorization:epoch 80 0.094944529235363
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06141533702611923
INFO:birdwatch.matrix_factorization:Num epochs: 81
INFO:birdwatch.matrix_factorization:epoch 81 0.094944529235363
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06141533702611923
INFO:birdwatch.matrix_factorization:Global Intercept: 0.17643898725509644
INFO:birdwatch.scorer:MFGroupScorer_10 Final helpfulness-filtered MF elapsed time: 2.38 secs (0.04 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_10 final scoring, about to call diligence with 347745 final round ratings.
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:467: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
noteInitState[c.internalNoteInterceptKey] = noteInitState[c.internalNoteInterceptRound2Key]
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:470: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = raterInitState[c.internalRaterInterceptRound2Key]
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
noteId internalNoteIntercept internalNoteFactor1 \
0 1653111205429403666 1.708474 -0.164413
1 1661796202554294297 -0.167551 3.731221
2 1715444846586929540 -1.217183 -1.369363
3 1738503882395844941 -6.172967 -0.742741
4 1738528131655323997 -3.485948 -0.206753
... ... ... ...
43802 1781302829556130237 0.560532 -1.497579
43803 1870681504772186619 0.618976 1.895533
43804 1830682877715247309 -0.246469 0.880792
43805 1736435011405181005 -0.213010 -0.917342
43806 1828123440026378402 -0.417520 -0.085999
internalNoteInterceptRound2
0 1.708474
1 -0.167551
2 -1.217183
3 -6.172967
4 -3.485948
... ...
43802 0.560532
43803 0.618976
43804 -0.246469
43805 -0.213010
43806 -0.417520
[43807 rows x 4 columns],
raterInitState:
raterParticipantId \
0 000045A5FA0CF004F68CBF2913506C37D540CF48522D33...
1 00018DBB934257251EBCEE91D0722C71B7DD592A571398...
2 00029D1FDD352D79B5073189C3F2BDF6377581F50D66C1...
3 00037E5A04D7781E19E5AAF559E14512FF17E7F76C30AF...
4 00053CDCAC04E3692F4A01305C8F3D093CCE221157D539...
... ...
30729 FFE9E0E39C0049AD113CEF0AB5178393F13B15C4E7B31C...
30730 FFF104BC8D2B5E53432FF3E605B5D5D76EDECE29AFA0F5...
30731 FFF1316D167C80F6D36C904E952D720D8E8DAE052288D1...
30732 FFF5A46494A3BDEC6FFF8A38A777E53484648B186FCD76...
30733 FFFEB058BCC25277E2662DD3E8C0506FB1B23BA4D965EA...
internalRaterIntercept internalRaterFactor1 internalRaterReputation \
0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
... ... ... ...
30729 0.491791 0.118269 0.564683
30730 0.185441 1.502850 0.418307
30731 NaN NaN NaN
30732 NaN NaN NaN
30733 NaN NaN NaN
internalRaterInterceptRound2
0 NaN
1 NaN
2 NaN
3 NaN
4 NaN
... ...
30729 0.491791
30730 0.185441
30731 NaN
30732 NaN
30733 NaN
[30734 rows x 5 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 4776, vs. num we are initializing: 30734
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 4776
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 4776, vs. num we are initializing: 30734
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 4776
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterReputation:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 4776, vs. num we are initializing: 30734
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterReputations: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterReputations: 4776
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 45105, vs. num we are initializing: 43807
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteFactor1s: 43880
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteFactor1s: 1225
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 45105, vs. num we are initializing: 43807
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteIntercepts: 43880
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteIntercepts: 1225
INFO:birdwatch.reputation_matrix_factorization:Final scoring, initial round fitting reputation MF (equivalent to Round 2 in Prescoring - learn note factor)
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=7.409797 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.620432 | time=0.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.579739 | time=0.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.573520 | time=1.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.572579 | time=1.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=2.572326 | time=1.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=2.572222 | time=2.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=190 | loss=2.572201 | time=2.2s
INFO:birdwatch.reputation_matrix_factorization:Final scoring, final round fitting reputation MF: learn just note intercept
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:505: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = savedFinalRoundPrescoringRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 4776, vs. num we are initializing: 30734
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 4776
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.587514 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.488095 | time=0.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.486561 | time=0.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=080 | loss=0.486501 | time=0.9s
INFO:birdwatch.diligence_model:Low diligence final loss: 0.4865
INFO:birdwatch.mf_base_scorer:diligenceNP cols: Index(['noteId', 'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'], dtype='object')
INFO:birdwatch.mf_base_scorer:np cols: Index(['noteId', 'noteIndex', 'internalNoteIntercept', 'internalNoteFactor1',
'internalNoteFactor1_max', 'internalNoteFactor1_median',
'internalNoteFactor1_min', 'internalNoteFactor1_refit_orig',
'internalNoteIntercept_median', 'internalNoteIntercept_refit_orig',
'ratingCount_all', 'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_10 Low Diligence Reputation Model elapsed time: 3.76 secs (0.06 mins)
INFO:birdwatch.mf_base_scorer:About to call compute_scored_notes with MFGroupScorer_10
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:82: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals.drop(columns_to_drop, inplace=True, axis=1)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:84: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = (
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:91: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:95: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:99: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey] = ratings_w_user_totals[
INFO:birdwatch.matrix_factorization:epoch 40 0.10978090018033981
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0827120766043663
INFO:birdwatch.matrix_factorization:epoch 40 0.10977377742528915
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08270204812288284
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 499: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on num_voters_interval: result=float64 expected=int64 (allowed)
INFO:birdwatch.constants:compute_scored_notes: compute incorrect aggregates elapsed time: 55.11 secs (0.92 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/pseudo_raters.py, in _add_extreme_raters_to_id_maps_and_params, at line 135: self.raterIdMapWithExtreme = pd.concat(
PandasTypeError: DataFrame concat on raterParticipantId: output=object inputs=[dtype('O'), dtype('int64')] (allowed)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/pseudo_raters.py, in _add_extreme_raters_to_id_maps_and_params, at line 151: self.raterParamsWithExtreme = pd.concat(
PandasTypeError: DataFrame concat on raterParticipantId: output=object inputs=[dtype('O'), dtype('int64')] (allowed)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/pseudo_raters.py, in _add_extreme_raters_to_id_maps_and_params, at line 135: self.raterIdMapWithExtreme = pd.concat(
PandasTypeError: DataFrame concat on raterParticipantId: output=object inputs=[dtype('O'), dtype('int64')] (allowed)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/pseudo_raters.py, in _add_extreme_raters_to_id_maps_and_params, at line 151: self.raterParamsWithExtreme = pd.concat(
PandasTypeError: DataFrame concat on raterParticipantId: output=object inputs=[dtype('O'), dtype('int64')] (allowed)
PandasTypeError: DataFrame concat on internalRaterFactor1: output=float64 inputs=[dtype('float32'), dtype('float64')] (allowed)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/pseudo_raters.py, in _add_extreme_raters_to_id_maps_and_params, at line 135: self.raterIdMapWithExtreme = pd.concat(
PandasTypeError: DataFrame concat on raterParticipantId: output=object inputs=[dtype('O'), dtype('int64')] (allowed)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.64 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/pseudo_raters.py, in _add_extreme_raters_to_id_maps_and_params, at line 151: self.raterParamsWithExtreme = pd.concat(
PandasTypeError: DataFrame concat on raterParticipantId: output=object inputs=[dtype('O'), dtype('int64')] (allowed)
PandasTypeError: DataFrame concat on internalRaterFactor1: output=float64 inputs=[dtype('float64'), dtype('float32')] (allowed)
INFO:birdwatch.constants:Pseudoraters: prepare data elapsed time: 0.53 secs (0.01 mins)
INFO:birdwatch.pseudo_raters:------------------
INFO:birdwatch.pseudo_raters:Re-scoring all notes with extra rating added: {'internalRaterIntercept': None, 'internalRaterFactor1': None, 'helpfulNum': None}
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 494: noteStats = tagAggregates.merge(noteStats, on=c.noteIdKey, how="outer")
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.15 secs (0.00 mins)
INFO:birdwatch.constants:compute_scored_notes: compute tag aggregates elapsed time: 2.78 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.78 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.04 secs (0.00 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:82: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals.drop(columns_to_drop, inplace=True, axis=1)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:84: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = (
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:91: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:95: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:99: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey] = ratings_w_user_totals[
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 377369, Notes: 1205353
INFO:birdwatch.matrix_factorization:initializing notes
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.72 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.58 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INIT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/pseudo_raters.py, in _check_note_parameters_same, at line 90: assert (noteParamsFromNewModel == self.noteParams).all().all()
PandasTypeError: Type expectation mismatch on noteId: found=bool expected=int64
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.74 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRHInertia (v1.0)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 499: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on num_voters_interval: result=float64 expected=int64 (allowed)
INFO:birdwatch.constants:compute_scored_notes: compute incorrect aggregates elapsed time: 3.14 secs (0.05 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Calling score_notes: GeneralCRHInertia (v1.0) elapsed time: 0.90 secs (0.01 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.61 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.15 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRHInertia (v1.0) elapsed time: 1.58 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: TagFilter (v1.0)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.84 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:epoch 0 0.13380815088748932
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10416073352098465
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.68 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.73 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRHInertia (v1.0)
INFO:birdwatch.scoring_rules:Candidate notes prior to tag filtering: 1729576
INFO:birdwatch.scoring_rules:Checking note tags:
INFO:birdwatch.scoring_rules:notHelpfulOther
INFO:birdwatch.scoring_rules:notHelpfulIncorrect
INFO:birdwatch.scoring_rules:notHelpfulSourcesMissingOrUnreliable
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculationOrBias
INFO:birdwatch.scoring_rules:notHelpfulMissingKeyPoints
INFO:birdwatch.scoring_rules:notHelpfulOutdated
INFO:birdwatch.scoring_rules:notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:outlier filtering disabled for tag: notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:notHelpfulArgumentativeOrBiased
INFO:birdwatch.scoring_rules:notHelpfulOffTopic
INFO:birdwatch.scoring_rules:notHelpfulSpamHarassmentOrAbuse
INFO:birdwatch.scoring_rules:notHelpfulIrrelevantSources
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculation
INFO:birdwatch.scoring_rules:notHelpfulNoteNotNeeded
INFO:birdwatch.scoring_rules:Total {note, tag} pairs where tag filter logic triggered: 111941
INFO:birdwatch.constants:Calling score_notes: GeneralCRHInertia (v1.0) elapsed time: 0.97 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRHInertia (v1.0) elapsed time: 1.58 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: TagFilter (v1.0)
INFO:birdwatch.scoring_rules:Total unique notes impacted by tag filtering: 56554
INFO:birdwatch.constants:Calling score_notes: TagFilter (v1.0) elapsed time: 4.36 secs (0.07 mins)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/scoring_rules.py, in apply_scoring_rules, at line 1099: noteColumns = noteColumns.merge(
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:Applying scoring rule: TagFilter (v1.0) elapsed time: 5.05 secs (0.08 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: CRHSuperThreshold (v1.0)
INFO:birdwatch.constants:Calling score_notes: CRHSuperThreshold (v1.0) elapsed time: 0.13 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: CRHSuperThreshold (v1.0) elapsed time: 0.79 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: ElevatedCRHInertia (v1.0)
INFO:birdwatch.constants:Calling score_notes: ElevatedCRHInertia (v1.0) elapsed time: 0.89 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Candidate notes prior to tag filtering: 1747758
INFO:birdwatch.scoring_rules:Checking note tags:
INFO:birdwatch.scoring_rules:notHelpfulOther
INFO:birdwatch.scoring_rules:notHelpfulIncorrect
INFO:birdwatch.scoring_rules:notHelpfulSourcesMissingOrUnreliable
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculationOrBias
INFO:birdwatch.scoring_rules:notHelpfulMissingKeyPoints
INFO:birdwatch.scoring_rules:notHelpfulOutdated
INFO:birdwatch.scoring_rules:notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:outlier filtering disabled for tag: notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:notHelpfulArgumentativeOrBiased
INFO:birdwatch.scoring_rules:notHelpfulOffTopic
INFO:birdwatch.scoring_rules:notHelpfulSpamHarassmentOrAbuse
INFO:birdwatch.scoring_rules:notHelpfulIrrelevantSources
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculation
INFO:birdwatch.scoring_rules:notHelpfulNoteNotNeeded
INFO:birdwatch.scoring_rules:Total {note, tag} pairs where tag filter logic triggered: 693
INFO:birdwatch.scoring_rules:Total unique notes impacted by tag filtering: 395
INFO:birdwatch.constants:Calling score_notes: TagFilter (v1.0) elapsed time: 3.03 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: ElevatedCRHInertia (v1.0) elapsed time: 1.57 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterIncorrect (v1.0)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/scoring_rules.py, in apply_scoring_rules, at line 1099: noteColumns = noteColumns.merge(
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:Applying scoring rule: TagFilter (v1.0) elapsed time: 3.66 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: CRHSuperThreshold (v1.0)
INFO:birdwatch.constants:Calling score_notes: CRHSuperThreshold (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: CRHSuperThreshold (v1.0) elapsed time: 0.71 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: ElevatedCRHInertia (v1.0)
INFO:birdwatch.constants:Calling score_notes: ElevatedCRHInertia (v1.0) elapsed time: 0.95 secs (0.02 mins)
INFO:birdwatch.scoring_rules:Total notes impacted by incorrect filtering: 12624
INFO:birdwatch.constants:Calling score_notes: FilterIncorrect (v1.0) elapsed time: 2.54 secs (0.04 mins)
INFO:birdwatch.constants:Applying scoring rule: ElevatedCRHInertia (v1.0) elapsed time: 1.65 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterIncorrect (v1.0)
INFO:birdwatch.constants:Applying scoring rule: FilterIncorrect (v1.0) elapsed time: 3.20 secs (0.05 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLowDiligence (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by incorrect filtering: 142
INFO:birdwatch.constants:Calling score_notes: FilterIncorrect (v1.0) elapsed time: 2.97 secs (0.05 mins)
INFO:birdwatch.scoring_rules:Total notes impacted by low diligence filtering: 100406
INFO:birdwatch.constants:Calling score_notes: FilterLowDiligence (v1.0) elapsed time: 2.54 secs (0.04 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterIncorrect (v1.0) elapsed time: 3.61 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLowDiligence (v1.0)
INFO:birdwatch.constants:Applying scoring rule: FilterLowDiligence (v1.0) elapsed time: 3.19 secs (0.05 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLargeFactor (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by large factor filtering: 305
INFO:birdwatch.constants:Calling score_notes: FilterLargeFactor (v1.0) elapsed time: 0.76 secs (0.01 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLargeFactor (v1.0) elapsed time: 1.48 secs (0.02 mins)
INFO:birdwatch.scoring_rules:Total notes impacted by low diligence filtering: 8669
INFO:birdwatch.constants:Calling score_notes: FilterLowDiligence (v1.0) elapsed time: 2.89 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLowDiligence (v1.0) elapsed time: 3.49 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLargeFactor (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by large factor filtering: 62
INFO:birdwatch.constants:Calling score_notes: FilterLargeFactor (v1.0) elapsed time: 0.91 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLargeFactor (v1.0) elapsed time: 1.51 secs (0.03 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=0.108360 | time=237.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=130 | loss=0.108360 | time=257.3s
INFO:birdwatch.reputation_matrix_factorization:Final scoring, final round fitting reputation MF: learn just note intercept
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 590255, vs. num we are initializing: 590255
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 590255
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.009269 | time=0.8s
INFO:birdwatch.matrix_factorization:Num epochs: 59
INFO:birdwatch.matrix_factorization:epoch 59 0.10969852656126022
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0825127437710762
INFO:birdwatch.matrix_factorization:Global Intercept: 0.17131315171718597
INFO:birdwatch.scorer:MFExpansionPlusScorer Final helpfulness-filtered MF elapsed time: 246.72 secs (4.11 mins)
INFO:birdwatch.mf_base_scorer:In MFExpansionPlusScorer final scoring, about to call diligence with 61628324 final round ratings.
INFO:birdwatch.matrix_factorization:Num epochs: 59
INFO:birdwatch.matrix_factorization:epoch 59 0.10969139635562897
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08250270783901215
INFO:birdwatch.matrix_factorization:Global Intercept: 0.17132236063480377
INFO:birdwatch.scorer:MFExpansionScorer Final helpfulness-filtered MF elapsed time: 244.55 secs (4.08 mins)
INFO:birdwatch.mf_base_scorer:In MFExpansionScorer final scoring, about to call diligence with 61502082 final round ratings.
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 39.73 secs (0.66 mins)
INFO:birdwatch.mf_base_scorer:sn cols: Index(['noteId', 'ratingWeight', 'notHelpfulOtherAdjusted',
'notHelpfulIncorrectAdjusted',
'notHelpfulSourcesMissingOrUnreliableAdjusted',
'notHelpfulOpinionSpeculationOrBiasAdjusted',
'notHelpfulMissingKeyPointsAdjusted', 'notHelpfulOutdatedAdjusted',
'notHelpfulHardToUnderstandAdjusted',
'notHelpfulArgumentativeOrBiasedAdjusted', 'notHelpfulOffTopicAdjusted',
'notHelpfulSpamHarassmentOrAbuseAdjusted',
'notHelpfulIrrelevantSourcesAdjusted',
'notHelpfulOpinionSpeculationAdjusted',
'notHelpfulNoteNotNeededAdjusted', 'notHelpfulOtherAdjustedRatio',
'notHelpfulIncorrectAdjustedRatio',
'notHelpfulSourcesMissingOrUnreliableAdjustedRatio',
'notHelpfulOpinionSpeculationOrBiasAdjustedRatio',
'notHelpfulMissingKeyPointsAdjustedRatio',
'notHelpfulOutdatedAdjustedRatio',
'notHelpfulHardToUnderstandAdjustedRatio',
'notHelpfulArgumentativeOrBiasedAdjustedRatio',
'notHelpfulOffTopicAdjustedRatio',
'notHelpfulSpamHarassmentOrAbuseAdjustedRatio',
'notHelpfulIrrelevantSourcesAdjustedRatio',
'notHelpfulOpinionSpeculationAdjustedRatio',
'notHelpfulNoteNotNeededAdjustedRatio', 'helpfulOther',
'helpfulInformative', 'helpfulClear', 'helpfulEmpathetic',
'helpfulGoodSources', 'helpfulUniqueContext', 'helpfulAddressesClaim',
'helpfulImportantContext', 'helpfulUnbiasedLanguage', 'notHelpfulOther',
'notHelpfulIncorrect', 'notHelpfulSourcesMissingOrUnreliable',
'notHelpfulOpinionSpeculationOrBias', 'notHelpfulMissingKeyPoints',
'notHelpfulOutdated', 'notHelpfulHardToUnderstand',
'notHelpfulArgumentativeOrBiased', 'notHelpfulOffTopic',
'notHelpfulSpamHarassmentOrAbuse', 'notHelpfulIrrelevantSources',
'notHelpfulOpinionSpeculation', 'notHelpfulNoteNotNeeded', 'numRatings',
'noteAuthorParticipantId', 'classification', 'currentStatus',
'internalNoteIntercept', 'internalNoteFactor1',
'lowDiligenceNoteIntercept', 'internalNoteFactor1_max',
'internalNoteFactor1_median', 'internalNoteFactor1_min',
'internalNoteFactor1_refit_orig', 'internalNoteIntercept_median',
'internalNoteIntercept_refit_orig', 'ratingCount_all',
'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'notHelpfulIncorrect_interval', 'p_incorrect_user_interval',
'num_voters_interval', 'tf_idf_incorrect_interval',
'internalRatingStatus', 'internalActiveRules', 'activeFilterTags',
'crhBool', 'crnhBool', 'awaitingBool'],
dtype='object')
INFO:birdwatch.matrix_factorization:epoch 20 0.10995960235595703
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0827786847949028
INFO:birdwatch.scorer:MFGroupScorer_13 Final compute scored notes elapsed time: 229.99 secs (3.83 mins)
INFO:birdwatch.scorer:Postprocessing output for MFGroupScorer_13
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 39.29 secs (0.65 mins)
INFO:birdwatch.mf_base_scorer:sn cols: Index(['noteId', 'ratingWeight', 'notHelpfulOtherAdjusted',
'notHelpfulIncorrectAdjusted',
'notHelpfulSourcesMissingOrUnreliableAdjusted',
'notHelpfulOpinionSpeculationOrBiasAdjusted',
'notHelpfulMissingKeyPointsAdjusted', 'notHelpfulOutdatedAdjusted',
'notHelpfulHardToUnderstandAdjusted',
'notHelpfulArgumentativeOrBiasedAdjusted', 'notHelpfulOffTopicAdjusted',
'notHelpfulSpamHarassmentOrAbuseAdjusted',
'notHelpfulIrrelevantSourcesAdjusted',
'notHelpfulOpinionSpeculationAdjusted',
'notHelpfulNoteNotNeededAdjusted', 'notHelpfulOtherAdjustedRatio',
'notHelpfulIncorrectAdjustedRatio',
'notHelpfulSourcesMissingOrUnreliableAdjustedRatio',
'notHelpfulOpinionSpeculationOrBiasAdjustedRatio',
'notHelpfulMissingKeyPointsAdjustedRatio',
'notHelpfulOutdatedAdjustedRatio',
'notHelpfulHardToUnderstandAdjustedRatio',
'notHelpfulArgumentativeOrBiasedAdjustedRatio',
'notHelpfulOffTopicAdjustedRatio',
'notHelpfulSpamHarassmentOrAbuseAdjustedRatio',
'notHelpfulIrrelevantSourcesAdjustedRatio',
'notHelpfulOpinionSpeculationAdjustedRatio',
'notHelpfulNoteNotNeededAdjustedRatio', 'helpfulOther',
'helpfulInformative', 'helpfulClear', 'helpfulEmpathetic',
'helpfulGoodSources', 'helpfulUniqueContext', 'helpfulAddressesClaim',
'helpfulImportantContext', 'helpfulUnbiasedLanguage', 'notHelpfulOther',
'notHelpfulIncorrect', 'notHelpfulSourcesMissingOrUnreliable',
'notHelpfulOpinionSpeculationOrBias', 'notHelpfulMissingKeyPoints',
'notHelpfulOutdated', 'notHelpfulHardToUnderstand',
'notHelpfulArgumentativeOrBiased', 'notHelpfulOffTopic',
'notHelpfulSpamHarassmentOrAbuse', 'notHelpfulIrrelevantSources',
'notHelpfulOpinionSpeculation', 'notHelpfulNoteNotNeeded', 'numRatings',
'noteAuthorParticipantId', 'classification', 'currentStatus',
'internalNoteIntercept', 'internalNoteFactor1',
'lowDiligenceNoteIntercept', 'internalNoteFactor1_max',
'internalNoteFactor1_median', 'internalNoteFactor1_min',
'internalNoteFactor1_refit_orig', 'internalNoteIntercept_median',
'internalNoteIntercept_refit_orig', 'ratingCount_all',
'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'notHelpfulIncorrect_interval', 'p_incorrect_user_interval',
'num_voters_interval', 'tf_idf_incorrect_interval',
'internalRatingStatus', 'internalActiveRules', 'activeFilterTags',
'crhBool', 'crnhBool', 'awaitingBool'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_10 Final compute scored notes elapsed time: 70.03 secs (1.17 mins)
INFO:birdwatch.scorer:Postprocessing output for MFGroupScorer_10
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.007150 | time=56.9s
INFO:birdwatch.matrix_factorization:epoch 40 0.10886719077825546
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0817500650882721
INFO:birdwatch.scorer: Original noteScores length: 1750506
INFO:birdwatch.scorer: Final noteScores length: 5169
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in score_final, at line 1190: noteScores = noteScores.merge(
PandasTypeError: Output mismatch on numFinalRoundRatings: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_10 Postprocess output elapsed time: 51.85 secs (0.86 mins)
INFO:birdwatch.run_scoring:MFGroupScorer_9 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.scorer: Original noteScores length: 1750506
INFO:birdwatch.scorer: Final noteScores length: 114714
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in score_final, at line 1190: noteScores = noteScores.merge(
PandasTypeError: Output mismatch on numFinalRoundRatings: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_13 Postprocess output elapsed time: 70.84 secs (1.18 mins)
INFO:birdwatch.run_scoring:MFGroupScorer_8 run_scorer_parallelizable just started in parallel: loading data from shared memory.
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:467: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
noteInitState[c.internalNoteInterceptKey] = noteInitState[c.internalNoteInterceptRound2Key]
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:470: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = raterInitState[c.internalRaterInterceptRound2Key]
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
noteId ... internalNoteInterceptRound2
0 1715437541212520617 ... 1.918703
1 1722158725807378589 ... -1.756146
2 1724462438022554032 ... -0.929131
3 1724471553906131352 ... -0.987910
4 1733114336250380782 ... -1.818934
... ... ... ...
1295075 1725550033179742375 ... -0.203534
1295076 1806065703117832239 ... -0.227197
1295077 1748887262912274653 ... -0.244440
1295078 1737522200616263780 ... 0.876775
1295079 1872611622075723818 ... -0.243256
[1295080 rows x 4 columns],
raterInitState:
raterParticipantId ... internalRaterInterceptRound2
0 000011269AD6F327AED0F4086A732B4052F9D28E8791E1... ... -0.629526
1 00003B703F86036C51F4F4B4C9F77B00C92D882421DA73... ... -0.169457
2 000045A5FA0CF004F68CBF2913506C37D540CF48522D33... ... -0.660671
3 00004D45B2AFE9EA96333B280009DCC621851088264E8F... ... NaN
4 00005300B9017670433392BF6767238D54E058EC25D5C5... ... -0.192502
... ... ... ...
712506 FFFFBBAB3C66ABB4DBC2A3B486C3C673345C89B5858465... ... 0.179834
712507 FFFFC46B8555A97065DB39F7D600C8BB643F7F3EBD810E... ... -0.259912
712508 FFFFC819886B2F837503D840D59EE8321A835AAF2B5C1E... ... -0.059480
712509 FFFFD54D8094D7620A7C3E162F98198FBDBD3401A4F2FB... ... NaN
712510 FFFFFE8909485374E33854B934713713CAC93CDB50C9D0... ... -0.490807
[712511 rows x 5 columns]
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:467: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
noteInitState[c.internalNoteInterceptKey] = noteInitState[c.internalNoteInterceptRound2Key]
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:470: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = raterInitState[c.internalRaterInterceptRound2Key]
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
noteId ... internalNoteInterceptRound2
0 1715437541212520617 ... 1.919350
1 1722158725807378589 ... -1.758969
2 1724462438022554032 ... -0.960170
3 1724471553906131352 ... -1.057418
4 1733114336250380782 ... -1.813292
... ... ... ...
1295049 1725550033179742375 ... -0.204101
1295050 1806065703117832239 ... -0.217258
1295051 1748887262912274653 ... -0.247808
1295052 1737522200616263780 ... 0.873060
1295053 1872611622075723818 ... -0.243832
[1295054 rows x 4 columns],
raterInitState:
raterParticipantId ... internalRaterInterceptRound2
0 000011269AD6F327AED0F4086A732B4052F9D28E8791E1... ... -0.621737
1 00003B703F86036C51F4F4B4C9F77B00C92D882421DA73... ... -0.169402
2 000045A5FA0CF004F68CBF2913506C37D540CF48522D33... ... -0.671606
3 00004D45B2AFE9EA96333B280009DCC621851088264E8F... ... NaN
4 00005300B9017670433392BF6767238D54E058EC25D5C5... ... -0.199052
... ... ... ...
712499 FFFFBBAB3C66ABB4DBC2A3B486C3C673345C89B5858465... ... 0.175126
712500 FFFFC46B8555A97065DB39F7D600C8BB643F7F3EBD810E... ... -0.255379
712501 FFFFC819886B2F837503D840D59EE8321A835AAF2B5C1E... ... -0.061838
712502 FFFFD54D8094D7620A7C3E162F98198FBDBD3401A4F2FB... ... NaN
712503 FFFFFE8909485374E33854B934713713CAC93CDB50C9D0... ... -0.489205
[712504 rows x 5 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 489800, vs. num we are initializing: 712511
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 489451, vs. num we are initializing: 712504
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 489800
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 489451
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 489800, vs. num we are initializing: 712511
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 489451, vs. num we are initializing: 712504
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 489800
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 489451
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterReputation:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 489800, vs. num we are initializing: 712511
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterReputation:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 489451, vs. num we are initializing: 712504
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterReputations: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterReputations: 489800
INFO:birdwatch.run_scoring:MFGroupScorer_9 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_9 run_scorer_parallelizable: Loading data elapsed time: 22.94 secs (0.38 mins)
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFGroupScorer_9 set to: 4
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterReputations: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterReputations: 489451
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_9. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 1296988, vs. num we are initializing: 1295080
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 1296961, vs. num we are initializing: 1295054
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteFactor1s: 1238892
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteFactor1s: 58096
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteFactor1s: 1238865
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteFactor1s: 58096
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 1296988, vs. num we are initializing: 1295080
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 1296961, vs. num we are initializing: 1295054
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteIntercepts: 1238892
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteIntercepts: 58096
INFO:birdwatch.reputation_matrix_factorization:Final scoring, initial round fitting reputation MF (equivalent to Round 2 in Prescoring - learn note factor)
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteIntercepts: 1238865
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteIntercepts: 58096
INFO:birdwatch.reputation_matrix_factorization:Final scoring, initial round fitting reputation MF (equivalent to Round 2 in Prescoring - learn note factor)
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=3.959213 | time=0.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=3.959929 | time=0.7s
INFO:birdwatch.run_scoring:MFGroupScorer_8 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_8 run_scorer_parallelizable: Loading data elapsed time: 24.21 secs (0.40 mins)
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFGroupScorer_8 set to: 4
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_8. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.matrix_factorization:epoch 60 0.10870382189750671
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08161847293376923
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.007132 | time=118.0s
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings after group filter: 5553700
INFO:birdwatch.scorer:MFGroupScorer_9 Filter input elapsed time: 43.46 secs (0.72 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 4917877, Num Unique Notes Rated: 158637, Num Unique Raters: 52319
INFO:birdwatch.scorer:MFGroupScorer_9 Prepare ratings elapsed time: 2.51 secs (0.04 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.439539 | time=46.2s
INFO:birdwatch.helpfulness_scores:Unique Raters: 28355
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 89428
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 30605
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 28355
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 3156203
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 3156203
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.439297 | time=49.1s
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 28355, Notes: 158479
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 19.915591340177563
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 111.31028037383177
INFO:birdwatch.matrix_factorization:Correcting loss function to simulate rating per note loss ratio = 20.032298846923542
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.matrix_factorization:epoch 0 0.14103776216506958
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1035650297999382
INFO:birdwatch.scorer: Ratings after group filter: 755067
INFO:birdwatch.scorer:MFGroupScorer_8 Filter input elapsed time: 40.37 secs (0.67 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 288153, Num Unique Notes Rated: 34270, Num Unique Raters: 5184
INFO:birdwatch.scorer:MFGroupScorer_8 Prepare ratings elapsed time: 0.22 secs (0.00 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
INFO:birdwatch.helpfulness_scores:Unique Raters: 2661
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 22616
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 2964
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 2661
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 224951
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 224951
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 2661, Notes: 34250
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 6.567912408759124
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 84.53626456219466
INFO:birdwatch.matrix_factorization:Correcting loss function to simulate rating per note loss ratio = 6.692715111528101
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.matrix_factorization:epoch 0 0.15108999609947205
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1044110357761383
INFO:birdwatch.matrix_factorization:epoch 20 0.09869233518838882
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06339141726493835
INFO:birdwatch.matrix_factorization:epoch 40 0.09577610343694687
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.061669427901506424
INFO:birdwatch.matrix_factorization:epoch 20 0.1004631370306015
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07102642953395844
INFO:birdwatch.matrix_factorization:epoch 60 0.09539130330085754
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06174606829881668
INFO:birdwatch.matrix_factorization:Num epochs: 74
INFO:birdwatch.matrix_factorization:epoch 74 0.09534881263971329
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06189499795436859
INFO:birdwatch.matrix_factorization:Global Intercept: 0.17209193110466003
INFO:birdwatch.scorer:MFGroupScorer_8 Final helpfulness-filtered MF elapsed time: 1.71 secs (0.03 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_8 final scoring, about to call diligence with 224951 final round ratings.
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:467: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
noteInitState[c.internalNoteInterceptKey] = noteInitState[c.internalNoteInterceptRound2Key]
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:470: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = raterInitState[c.internalRaterInterceptRound2Key]
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
noteId internalNoteIntercept internalNoteFactor1 \
0 1824145618043871451 -0.435419 2.247933
1 1827427946220380250 -1.301155 1.366825
2 1834946132486529335 -0.438711 1.173314
3 1835060018384630219 -0.332141 2.292651
4 1835787498271781185 -1.123652 0.906726
... ... ... ...
33036 1739331011681407082 -0.181655 0.731855
33037 1860064434762224022 -1.102765 -0.091826
33038 1823212258971013310 -0.398532 0.269370
33039 1775246560772636964 -0.326135 -0.838737
33040 1746387003758002672 -0.426205 -0.665179
internalNoteInterceptRound2
0 -0.435419
1 -1.301155
2 -0.438711
3 -0.332141
4 -1.123652
... ...
33036 -0.181655
33037 -1.102765
33038 -0.398532
33039 -0.326135
33040 -0.426205
[33041 rows x 4 columns],
raterInitState:
raterParticipantId \
0 000045A5FA0CF004F68CBF2913506C37D540CF48522D33...
1 000332634A6A64C51BA706D66615B87D74D34B3465D3CD...
2 0005983E6E18862483AB372C5B61FEBC1F8A573E7701F9...
3 000A0CE0A7410288C107822B15D2B35C5E95715EA946E7...
4 00177CE102355982315EED42EADA601B04A6112E029004...
... ...
22611 FFE894CCE08EAD722CB39396FBE0AFC5E05C9C9B9E3721...
22612 FFEFEEF7E6B2DCB450856DBBB9F7EF303369C610B38A42...
22613 FFF32E6FDAD8CA20E1F78638046B1E3D95B838103AE629...
22614 FFF5A46494A3BDEC6FFF8A38A777E53484648B186FCD76...
22615 FFFEB058BCC25277E2662DD3E8C0506FB1B23BA4D965EA...
internalRaterIntercept internalRaterFactor1 internalRaterReputation \
0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
... ... ... ...
22611 NaN NaN NaN
22612 NaN NaN NaN
22613 NaN NaN NaN
22614 NaN NaN NaN
22615 NaN NaN NaN
internalRaterInterceptRound2
0 NaN
1 NaN
2 NaN
3 NaN
4 NaN
... ...
22611 NaN
22612 NaN
22613 NaN
22614 NaN
22615 NaN
[22616 rows x 5 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 2661, vs. num we are initializing: 22616
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 2661
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 2661, vs. num we are initializing: 22616
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 2661
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterReputation:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 2661, vs. num we are initializing: 22616
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterReputations: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterReputations: 2661
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 34250, vs. num we are initializing: 33041
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteFactor1s: 33212
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteFactor1s: 1038
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 34250, vs. num we are initializing: 33041
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteIntercepts: 33212
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteIntercepts: 1038
INFO:birdwatch.reputation_matrix_factorization:Final scoring, initial round fitting reputation MF (equivalent to Round 2 in Prescoring - learn note factor)
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=8.746864 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.915614 | time=0.4s
INFO:birdwatch.matrix_factorization:Num epochs: 74
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.862045 | time=0.8s
INFO:birdwatch.matrix_factorization:epoch 74 0.10868552327156067
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08159460127353668
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.853016 | time=1.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.851246 | time=1.5s
INFO:birdwatch.constants:Pseudo: fit all notes with raters constant elapsed time: 202.43 secs (3.37 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=2.850646 | time=1.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=2.850376 | time=2.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=2.850243 | time=2.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=235 | loss=2.850182 | time=2.4s
INFO:birdwatch.reputation_matrix_factorization:Final scoring, final round fitting reputation MF: learn just note intercept
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:505: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = savedFinalRoundPrescoringRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 2661, vs. num we are initializing: 22616
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 2661
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.672999 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.520568 | time=0.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.518948 | time=0.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=080 | loss=0.518872 | time=0.7s
INFO:birdwatch.diligence_model:Low diligence final loss: 0.5189
INFO:birdwatch.mf_base_scorer:diligenceNP cols: Index(['noteId', 'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'], dtype='object')
INFO:birdwatch.mf_base_scorer:np cols: Index(['noteId', 'noteIndex', 'internalNoteIntercept', 'internalNoteFactor1',
'internalNoteFactor1_max', 'internalNoteFactor1_median',
'internalNoteFactor1_min', 'internalNoteFactor1_refit_orig',
'internalNoteIntercept_median', 'internalNoteIntercept_refit_orig',
'ratingCount_all', 'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_8 Low Diligence Reputation Model elapsed time: 3.61 secs (0.06 mins)
INFO:birdwatch.mf_base_scorer:About to call compute_scored_notes with MFGroupScorer_8
INFO:birdwatch.matrix_factorization:epoch 40 0.09801814705133438
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06872601062059402
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 494: noteStats = tagAggregates.merge(noteStats, on=c.noteIdKey, how="outer")
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:compute_scored_notes: compute tag aggregates elapsed time: 2.30 secs (0.04 mins)
INFO:birdwatch.matrix_factorization:epoch 60 0.09777367860078812
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06855513155460358
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:82: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals.drop(columns_to_drop, inplace=True, axis=1)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:84: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = (
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:91: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:95: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:99: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey] = ratings_w_user_totals[
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 499: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on num_voters_interval: result=float64 expected=int64 (allowed)
INFO:birdwatch.constants:compute_scored_notes: compute incorrect aggregates elapsed time: 2.65 secs (0.04 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.67 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:Num epochs: 76
INFO:birdwatch.matrix_factorization:epoch 76 0.09774463623762131
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06854161620140076
INFO:birdwatch.matrix_factorization:Global Intercept: 0.17108562588691711
INFO:birdwatch.scorer:MFGroupScorer_9 Final helpfulness-filtered MF elapsed time: 22.55 secs (0.38 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_9 final scoring, about to call diligence with 3156203 final round ratings.
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.81 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.67 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.78 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRHInertia (v1.0)
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:467: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
noteInitState[c.internalNoteInterceptKey] = noteInitState[c.internalNoteInterceptRound2Key]
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:470: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = raterInitState[c.internalRaterInterceptRound2Key]
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
noteId internalNoteIntercept internalNoteFactor1 \
0 1642506152822079490 -2.279120 1.164171
1 1644889840532566017 0.454213 2.501363
2 1644890766915796992 -0.994993 1.546992
3 1649616502188912641 -1.138480 0.109131
4 1649621727880839168 -1.210915 0.852176
... ... ... ...
157400 1769340856199221523 -0.265732 0.794307
157401 1713350331864625656 1.330089 1.768102
157402 1836274146642153547 -0.267058 -0.643837
157403 1767562540320543193 -0.296659 -0.508060
157404 1872611622075723818 -0.426384 -0.310856
internalNoteInterceptRound2
0 -2.279120
1 0.454213
2 -0.994993
3 -1.138480
4 -1.210915
... ...
157400 -0.265732
157401 1.330089
157402 -0.267058
157403 -0.296659
157404 -0.426384
[157405 rows x 4 columns],
raterInitState:
raterParticipantId \
0 000045A5FA0CF004F68CBF2913506C37D540CF48522D33...
1 00018DBB934257251EBCEE91D0722C71B7DD592A571398...
2 0002725E706CF18C040E21F30CE2D39994513C3BB8CF58...
3 00029D1FDD352D79B5073189C3F2BDF6377581F50D66C1...
4 0002D1E11A8EA1E4B25048FA9D117406CE9EB1D3143BC9...
... ...
89423 FFFDAB98EE31EC0CC51169937F859D5B676870C6470C19...
89424 FFFEB058BCC25277E2662DD3E8C0506FB1B23BA4D965EA...
89425 FFFEB27D6E27351D14EB43777F265F694744ABB4B3B7AD...
89426 FFFEB3E291D915645E08FD13A9BFE66B5912FE45306D25...
89427 FFFF8C877BDC3CEFEFD0D4C5F0E8B4BE537F5023A1F31F...
internalRaterIntercept internalRaterFactor1 internalRaterReputation \
0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 -0.888680 -1.365593 0.286359
4 NaN NaN NaN
... ... ... ...
89423 0.137015 0.673040 0.569525
89424 NaN NaN NaN
89425 NaN NaN NaN
89426 0.126170 -0.555323 0.160850
89427 0.300415 -0.510434 0.437841
internalRaterInterceptRound2
0 NaN
1 NaN
2 NaN
3 -0.888680
4 NaN
... ...
89423 0.137015
89424 NaN
89425 NaN
89426 0.126170
89427 0.300415
[89428 rows x 5 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 28355, vs. num we are initializing: 89428
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 28355
INFO:birdwatch.constants:Calling score_notes: GeneralCRHInertia (v1.0) elapsed time: 1.09 secs (0.02 mins)
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 28355, vs. num we are initializing: 89428
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 28355
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterReputation:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 28355, vs. num we are initializing: 89428
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterReputations: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterReputations: 28355
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 158479, vs. num we are initializing: 157405
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteFactor1s: 154362
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteFactor1s: 4117
INFO:birdwatch.constants:Applying scoring rule: GeneralCRHInertia (v1.0) elapsed time: 1.73 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: TagFilter (v1.0)
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 158479, vs. num we are initializing: 157405
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteIntercepts: 154362
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteIntercepts: 4117
INFO:birdwatch.reputation_matrix_factorization:Final scoring, initial round fitting reputation MF (equivalent to Round 2 in Prescoring - learn note factor)
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=4.820239 | time=0.1s
INFO:birdwatch.pseudo_raters:------------------
INFO:birdwatch.pseudo_raters:Re-scoring all notes with extra rating added: {'raterParticipantId': '-1', 'raterIndex': 377369, 'internalRaterIntercept': -0.48738948, 'internalRaterFactor1': -1.1244862, 'helpfulNum': 1.0}
INFO:birdwatch.scoring_rules:Candidate notes prior to tag filtering: 1748247
INFO:birdwatch.scoring_rules:Checking note tags:
INFO:birdwatch.scoring_rules:notHelpfulOther
INFO:birdwatch.scoring_rules:notHelpfulIncorrect
INFO:birdwatch.scoring_rules:notHelpfulSourcesMissingOrUnreliable
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculationOrBias
INFO:birdwatch.scoring_rules:notHelpfulMissingKeyPoints
INFO:birdwatch.scoring_rules:notHelpfulOutdated
INFO:birdwatch.scoring_rules:notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:outlier filtering disabled for tag: notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:notHelpfulArgumentativeOrBiased
INFO:birdwatch.scoring_rules:notHelpfulOffTopic
INFO:birdwatch.scoring_rules:notHelpfulSpamHarassmentOrAbuse
INFO:birdwatch.scoring_rules:notHelpfulIrrelevantSources
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculation
INFO:birdwatch.scoring_rules:notHelpfulNoteNotNeeded
INFO:birdwatch.scoring_rules:Total {note, tag} pairs where tag filter logic triggered: 445
INFO:birdwatch.scoring_rules:Total unique notes impacted by tag filtering: 311
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.310171 | time=2.9s
INFO:birdwatch.constants:Calling score_notes: TagFilter (v1.0) elapsed time: 3.11 secs (0.05 mins)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/scoring_rules.py, in apply_scoring_rules, at line 1099: noteColumns = noteColumns.merge(
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:Applying scoring rule: TagFilter (v1.0) elapsed time: 3.79 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: CRHSuperThreshold (v1.0)
INFO:birdwatch.constants:Calling score_notes: CRHSuperThreshold (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 377370, Notes: 1205353
INFO:birdwatch.matrix_factorization:initializing notes
INFO:birdwatch.constants:Applying scoring rule: CRHSuperThreshold (v1.0) elapsed time: 0.80 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: ElevatedCRHInertia (v1.0)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INIT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/pseudo_raters.py, in _check_note_parameters_same, at line 90: assert (noteParamsFromNewModel == self.noteParams).all().all()
PandasTypeError: Type expectation mismatch on noteId: found=bool expected=int64
INFO:birdwatch.constants:Calling score_notes: ElevatedCRHInertia (v1.0) elapsed time: 0.93 secs (0.02 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.282616 | time=5.9s
INFO:birdwatch.constants:Applying scoring rule: ElevatedCRHInertia (v1.0) elapsed time: 1.64 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterIncorrect (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by incorrect filtering: 72
INFO:birdwatch.matrix_factorization:epoch 0 0.16270163655281067
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1244073361158371
INFO:birdwatch.constants:Calling score_notes: FilterIncorrect (v1.0) elapsed time: 2.98 secs (0.05 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.280400 | time=9.2s
INFO:birdwatch.constants:Applying scoring rule: FilterIncorrect (v1.0) elapsed time: 3.68 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLowDiligence (v1.0)
INFO:birdwatch.reputation_matrix_factorization:epoch=115 | loss=2.280273 | time=11.6s
INFO:birdwatch.reputation_matrix_factorization:Final scoring, final round fitting reputation MF: learn just note intercept
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:505: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = savedFinalRoundPrescoringRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 28355, vs. num we are initializing: 89428
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 28355
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.355155 | time=0.1s
INFO:birdwatch.scoring_rules:Total notes impacted by low diligence filtering: 6577
INFO:birdwatch.constants:Calling score_notes: FilterLowDiligence (v1.0) elapsed time: 2.98 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLowDiligence (v1.0) elapsed time: 3.64 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLargeFactor (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by large factor filtering: 84
INFO:birdwatch.constants:Calling score_notes: FilterLargeFactor (v1.0) elapsed time: 0.85 secs (0.01 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLargeFactor (v1.0) elapsed time: 1.53 secs (0.03 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.339918 | time=3.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.419287 | time=92.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=055 | loss=0.339748 | time=5.8s
INFO:birdwatch.diligence_model:Low diligence final loss: 0.3397
INFO:birdwatch.mf_base_scorer:diligenceNP cols: Index(['noteId', 'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'], dtype='object')
INFO:birdwatch.mf_base_scorer:np cols: Index(['noteId', 'noteIndex', 'internalNoteIntercept', 'internalNoteFactor1',
'internalNoteFactor1_max', 'internalNoteFactor1_median',
'internalNoteFactor1_min', 'internalNoteFactor1_refit_orig',
'internalNoteIntercept_median', 'internalNoteIntercept_refit_orig',
'ratingCount_all', 'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_9 Low Diligence Reputation Model elapsed time: 21.87 secs (0.36 mins)
INFO:birdwatch.mf_base_scorer:About to call compute_scored_notes with MFGroupScorer_9
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=0.007131 | time=184.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=0.007131 | time=184.7s
INFO:birdwatch.helpfulness_model:Helpfulness reputation loss: 0.0071
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/reputation_scorer.py, in _score_notes_and_users, at line 187: noteStats = noteStats.merge(noteStatusHistory[[c.noteIdKey]].drop_duplicates(), how="outer")
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.scorer:Postprocessing output for ReputationScorer
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.419047 | time=95.6s
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 494: noteStats = tagAggregates.merge(noteStats, on=c.noteIdKey, how="outer")
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:compute_scored_notes: compute tag aggregates elapsed time: 9.35 secs (0.16 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:82: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals.drop(columns_to_drop, inplace=True, axis=1)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:84: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = (
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:91: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:95: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:99: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey] = ratings_w_user_totals[
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 499: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on num_voters_interval: result=float64 expected=int64 (allowed)
INFO:birdwatch.constants:compute_scored_notes: compute incorrect aggregates elapsed time: 7.41 secs (0.12 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.12 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.80 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.03 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.73 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.60 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.76 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRHInertia (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRHInertia (v1.0) elapsed time: 1.01 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRHInertia (v1.0) elapsed time: 1.67 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: TagFilter (v1.0)
INFO:birdwatch.scoring_rules:Candidate notes prior to tag filtering: 1744475
INFO:birdwatch.scoring_rules:Checking note tags:
INFO:birdwatch.scoring_rules:notHelpfulOther
INFO:birdwatch.scoring_rules:notHelpfulIncorrect
INFO:birdwatch.scoring_rules:notHelpfulSourcesMissingOrUnreliable
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculationOrBias
INFO:birdwatch.scoring_rules:notHelpfulMissingKeyPoints
INFO:birdwatch.scoring_rules:notHelpfulOutdated
INFO:birdwatch.scoring_rules:notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:outlier filtering disabled for tag: notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:notHelpfulArgumentativeOrBiased
INFO:birdwatch.scoring_rules:notHelpfulOffTopic
INFO:birdwatch.scoring_rules:notHelpfulSpamHarassmentOrAbuse
INFO:birdwatch.scoring_rules:notHelpfulIrrelevantSources
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculation
INFO:birdwatch.scoring_rules:notHelpfulNoteNotNeeded
INFO:birdwatch.scoring_rules:Total {note, tag} pairs where tag filter logic triggered: 12041
INFO:birdwatch.scoring_rules:Total unique notes impacted by tag filtering: 6304
INFO:birdwatch.constants:Calling score_notes: TagFilter (v1.0) elapsed time: 3.17 secs (0.05 mins)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/scoring_rules.py, in apply_scoring_rules, at line 1099: noteColumns = noteColumns.merge(
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:Applying scoring rule: TagFilter (v1.0) elapsed time: 3.87 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: CRHSuperThreshold (v1.0)
INFO:birdwatch.constants:Calling score_notes: CRHSuperThreshold (v1.0) elapsed time: 0.13 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: CRHSuperThreshold (v1.0) elapsed time: 0.83 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: ElevatedCRHInertia (v1.0)
INFO:birdwatch.constants:Calling score_notes: ElevatedCRHInertia (v1.0) elapsed time: 0.98 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: ElevatedCRHInertia (v1.0) elapsed time: 1.62 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterIncorrect (v1.0)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 40.16 secs (0.67 mins)
INFO:birdwatch.mf_base_scorer:sn cols: Index(['noteId', 'ratingWeight', 'notHelpfulOtherAdjusted',
'notHelpfulIncorrectAdjusted',
'notHelpfulSourcesMissingOrUnreliableAdjusted',
'notHelpfulOpinionSpeculationOrBiasAdjusted',
'notHelpfulMissingKeyPointsAdjusted', 'notHelpfulOutdatedAdjusted',
'notHelpfulHardToUnderstandAdjusted',
'notHelpfulArgumentativeOrBiasedAdjusted', 'notHelpfulOffTopicAdjusted',
'notHelpfulSpamHarassmentOrAbuseAdjusted',
'notHelpfulIrrelevantSourcesAdjusted',
'notHelpfulOpinionSpeculationAdjusted',
'notHelpfulNoteNotNeededAdjusted', 'notHelpfulOtherAdjustedRatio',
'notHelpfulIncorrectAdjustedRatio',
'notHelpfulSourcesMissingOrUnreliableAdjustedRatio',
'notHelpfulOpinionSpeculationOrBiasAdjustedRatio',
'notHelpfulMissingKeyPointsAdjustedRatio',
'notHelpfulOutdatedAdjustedRatio',
'notHelpfulHardToUnderstandAdjustedRatio',
'notHelpfulArgumentativeOrBiasedAdjustedRatio',
'notHelpfulOffTopicAdjustedRatio',
'notHelpfulSpamHarassmentOrAbuseAdjustedRatio',
'notHelpfulIrrelevantSourcesAdjustedRatio',
'notHelpfulOpinionSpeculationAdjustedRatio',
'notHelpfulNoteNotNeededAdjustedRatio', 'helpfulOther',
'helpfulInformative', 'helpfulClear', 'helpfulEmpathetic',
'helpfulGoodSources', 'helpfulUniqueContext', 'helpfulAddressesClaim',
'helpfulImportantContext', 'helpfulUnbiasedLanguage', 'notHelpfulOther',
'notHelpfulIncorrect', 'notHelpfulSourcesMissingOrUnreliable',
'notHelpfulOpinionSpeculationOrBias', 'notHelpfulMissingKeyPoints',
'notHelpfulOutdated', 'notHelpfulHardToUnderstand',
'notHelpfulArgumentativeOrBiased', 'notHelpfulOffTopic',
'notHelpfulSpamHarassmentOrAbuse', 'notHelpfulIrrelevantSources',
'notHelpfulOpinionSpeculation', 'notHelpfulNoteNotNeeded', 'numRatings',
'noteAuthorParticipantId', 'classification', 'currentStatus',
'internalNoteIntercept', 'internalNoteFactor1',
'lowDiligenceNoteIntercept', 'internalNoteFactor1_max',
'internalNoteFactor1_median', 'internalNoteFactor1_min',
'internalNoteFactor1_refit_orig', 'internalNoteIntercept_median',
'internalNoteIntercept_refit_orig', 'ratingCount_all',
'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'notHelpfulIncorrect_interval', 'p_incorrect_user_interval',
'num_voters_interval', 'tf_idf_incorrect_interval',
'internalRatingStatus', 'internalActiveRules', 'activeFilterTags',
'crhBool', 'crnhBool', 'awaitingBool'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_8 Final compute scored notes elapsed time: 70.34 secs (1.17 mins)
INFO:birdwatch.scorer:Postprocessing output for MFGroupScorer_8
INFO:birdwatch.scoring_rules:Total notes impacted by incorrect filtering: 2056
INFO:birdwatch.constants:Calling score_notes: FilterIncorrect (v1.0) elapsed time: 2.91 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterIncorrect (v1.0) elapsed time: 3.54 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLowDiligence (v1.0)
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.418124 | time=135.3s
INFO:birdwatch.scoring_rules:Total notes impacted by low diligence filtering: 31106
INFO:birdwatch.constants:Calling score_notes: FilterLowDiligence (v1.0) elapsed time: 2.88 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLowDiligence (v1.0) elapsed time: 3.58 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLargeFactor (v1.0)
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.417884 | time=137.4s
INFO:birdwatch.scoring_rules:Total notes impacted by large factor filtering: 46
INFO:birdwatch.constants:Calling score_notes: FilterLargeFactor (v1.0) elapsed time: 0.83 secs (0.01 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLargeFactor (v1.0) elapsed time: 1.52 secs (0.03 mins)
INFO:birdwatch.matrix_factorization:epoch 20 0.13378728926181793
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10396137833595276
INFO:birdwatch.scorer: Original noteScores length: 1750506
INFO:birdwatch.scorer: Final noteScores length: 1394865
INFO:birdwatch.scorer:ReputationScorer Postprocess output elapsed time: 54.80 secs (0.91 mins)
INFO:birdwatch.run_scoring:MFGroupScorer_7 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.reputation_matrix_factorization:epoch=105 | loss=2.418079 | time=157.5s
INFO:birdwatch.reputation_matrix_factorization:Final scoring, final round fitting reputation MF: learn just note intercept
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:505: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = savedFinalRoundPrescoringRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:epoch=105 | loss=2.417839 | time=158.7s
INFO:birdwatch.reputation_matrix_factorization:Final scoring, final round fitting reputation MF: learn just note intercept
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:505: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = savedFinalRoundPrescoringRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 489451, vs. num we are initializing: 712504
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 489800, vs. num we are initializing: 712511
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 489451
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 489800
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.257332 | time=0.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.257032 | time=0.6s
INFO:birdwatch.run_scoring:MFGroupScorer_7 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_7 run_scorer_parallelizable: Loading data elapsed time: 24.00 secs (0.40 mins)
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFGroupScorer_7 set to: 4
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_7. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 39.44 secs (0.66 mins)
INFO:birdwatch.mf_base_scorer:sn cols: Index(['noteId', 'ratingWeight', 'notHelpfulOtherAdjusted',
'notHelpfulIncorrectAdjusted',
'notHelpfulSourcesMissingOrUnreliableAdjusted',
'notHelpfulOpinionSpeculationOrBiasAdjusted',
'notHelpfulMissingKeyPointsAdjusted', 'notHelpfulOutdatedAdjusted',
'notHelpfulHardToUnderstandAdjusted',
'notHelpfulArgumentativeOrBiasedAdjusted', 'notHelpfulOffTopicAdjusted',
'notHelpfulSpamHarassmentOrAbuseAdjusted',
'notHelpfulIrrelevantSourcesAdjusted',
'notHelpfulOpinionSpeculationAdjusted',
'notHelpfulNoteNotNeededAdjusted', 'notHelpfulOtherAdjustedRatio',
'notHelpfulIncorrectAdjustedRatio',
'notHelpfulSourcesMissingOrUnreliableAdjustedRatio',
'notHelpfulOpinionSpeculationOrBiasAdjustedRatio',
'notHelpfulMissingKeyPointsAdjustedRatio',
'notHelpfulOutdatedAdjustedRatio',
'notHelpfulHardToUnderstandAdjustedRatio',
'notHelpfulArgumentativeOrBiasedAdjustedRatio',
'notHelpfulOffTopicAdjustedRatio',
'notHelpfulSpamHarassmentOrAbuseAdjustedRatio',
'notHelpfulIrrelevantSourcesAdjustedRatio',
'notHelpfulOpinionSpeculationAdjustedRatio',
'notHelpfulNoteNotNeededAdjustedRatio', 'helpfulOther',
'helpfulInformative', 'helpfulClear', 'helpfulEmpathetic',
'helpfulGoodSources', 'helpfulUniqueContext', 'helpfulAddressesClaim',
'helpfulImportantContext', 'helpfulUnbiasedLanguage', 'notHelpfulOther',
'notHelpfulIncorrect', 'notHelpfulSourcesMissingOrUnreliable',
'notHelpfulOpinionSpeculationOrBias', 'notHelpfulMissingKeyPoints',
'notHelpfulOutdated', 'notHelpfulHardToUnderstand',
'notHelpfulArgumentativeOrBiased', 'notHelpfulOffTopic',
'notHelpfulSpamHarassmentOrAbuse', 'notHelpfulIrrelevantSources',
'notHelpfulOpinionSpeculation', 'notHelpfulNoteNotNeeded', 'numRatings',
'noteAuthorParticipantId', 'classification', 'currentStatus',
'internalNoteIntercept', 'internalNoteFactor1',
'lowDiligenceNoteIntercept', 'internalNoteFactor1_max',
'internalNoteFactor1_median', 'internalNoteFactor1_min',
'internalNoteFactor1_refit_orig', 'internalNoteIntercept_median',
'internalNoteIntercept_refit_orig', 'ratingCount_all',
'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'notHelpfulIncorrect_interval', 'p_incorrect_user_interval',
'num_voters_interval', 'tf_idf_incorrect_interval',
'internalRatingStatus', 'internalActiveRules', 'activeFilterTags',
'crhBool', 'crnhBool', 'awaitingBool'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_9 Final compute scored notes elapsed time: 85.50 secs (1.43 mins)
INFO:birdwatch.scorer:Postprocessing output for MFGroupScorer_9
INFO:birdwatch.scorer: Original noteScores length: 1750506
INFO:birdwatch.scorer: Final noteScores length: 799
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in score_final, at line 1190: noteScores = noteScores.merge(
PandasTypeError: Output mismatch on numFinalRoundRatings: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_8 Postprocess output elapsed time: 59.28 secs (0.99 mins)
INFO:birdwatch.run_scoring:MFGroupScorer_6 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.matrix_factorization:Num epochs: 40
INFO:birdwatch.matrix_factorization:epoch 40 0.13263684511184692
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10269863158464432
INFO:birdwatch.constants:Pseudo: fit all notes with raters constant elapsed time: 114.47 secs (1.91 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.250835 | time=41.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.251126 | time=42.3s
INFO:birdwatch.pseudo_raters:------------------
INFO:birdwatch.pseudo_raters:Re-scoring all notes with extra rating added: {'raterParticipantId': '-2', 'raterIndex': 377370, 'internalRaterIntercept': -0.48738948, 'internalRaterFactor1': 0.0, 'helpfulNum': 1.0}
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 377370, Notes: 1205353
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INIT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/pseudo_raters.py, in _check_note_parameters_same, at line 90: assert (noteParamsFromNewModel == self.noteParams).all().all()
PandasTypeError: Type expectation mismatch on noteId: found=bool expected=int64
INFO:birdwatch.run_scoring:MFGroupScorer_6 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_6 run_scorer_parallelizable: Loading data elapsed time: 23.11 secs (0.39 mins)
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFGroupScorer_6 set to: 4
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_6. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.matrix_factorization:epoch 0 0.16573211550712585
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.12750285863876343
INFO:birdwatch.scorer: Ratings after group filter: 1747969
INFO:birdwatch.scorer:MFGroupScorer_7 Filter input elapsed time: 44.55 secs (0.74 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 1238501, Num Unique Notes Rated: 81253, Num Unique Raters: 29029
INFO:birdwatch.scorer:MFGroupScorer_7 Prepare ratings elapsed time: 0.63 secs (0.01 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
INFO:birdwatch.reputation_matrix_factorization:epoch=045 | loss=0.250785 | time=60.8s
INFO:birdwatch.diligence_model:Low diligence final loss: 0.2508
INFO:birdwatch.mf_base_scorer:diligenceNP cols: Index(['noteId', 'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'], dtype='object')
INFO:birdwatch.reputation_matrix_factorization:epoch=045 | loss=0.251077 | time=62.1s
INFO:birdwatch.helpfulness_scores:Unique Raters: 12367
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 56374
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 14661
INFO:birdwatch.diligence_model:Low diligence final loss: 0.2511
INFO:birdwatch.mf_base_scorer:diligenceNP cols: Index(['noteId', 'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'], dtype='object')
INFO:birdwatch.mf_base_scorer:np cols: Index(['noteId', 'noteIndex', 'internalNoteIntercept', 'internalNoteFactor1',
'internalNoteFactor1_max', 'internalNoteFactor1_median',
'internalNoteFactor1_min', 'internalNoteFactor1_refit_orig',
'internalNoteIntercept_median', 'internalNoteIntercept_refit_orig',
'ratingCount_all', 'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'],
dtype='object')
INFO:birdwatch.scorer:MFExpansionPlusScorer Low Diligence Reputation Model elapsed time: 312.24 secs (5.20 mins)
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 12367
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 876487
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 876487
INFO:birdwatch.mf_base_scorer:About to call compute_scored_notes with MFExpansionPlusScorer
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 12367, Notes: 81195
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 10.79483958371821
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 70.87304924395569
INFO:birdwatch.matrix_factorization:Correcting loss function to simulate rating per note loss ratio = 10.970841516845445
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.matrix_factorization:epoch 0 0.1506255865097046
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10812779515981674
INFO:birdwatch.mf_base_scorer:np cols: Index(['noteId', 'noteIndex', 'internalNoteIntercept', 'internalNoteFactor1',
'internalNoteFactor1_max', 'internalNoteFactor1_median',
'internalNoteFactor1_min', 'internalNoteFactor1_refit_orig',
'internalNoteIntercept_median', 'internalNoteIntercept_refit_orig',
'ratingCount_all', 'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'],
dtype='object')
INFO:birdwatch.scorer:MFExpansionScorer Low Diligence Reputation Model elapsed time: 312.15 secs (5.20 mins)
INFO:birdwatch.mf_base_scorer:About to call compute_scored_notes with MFExpansionScorer
INFO:birdwatch.matrix_factorization:epoch 20 0.11070583015680313
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07883638888597488
INFO:birdwatch.matrix_factorization:epoch 40 0.10865917056798935
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07696988433599472
INFO:birdwatch.matrix_factorization:epoch 60 0.10841184109449387
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07680679112672806
INFO:birdwatch.matrix_factorization:Num epochs: 71
INFO:birdwatch.matrix_factorization:epoch 71 0.10838818550109863
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07678954303264618
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1820950210094452
INFO:birdwatch.scorer:MFGroupScorer_7 Final helpfulness-filtered MF elapsed time: 5.17 secs (0.09 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_7 final scoring, about to call diligence with 876487 final round ratings.
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:467: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
noteInitState[c.internalNoteInterceptKey] = noteInitState[c.internalNoteInterceptRound2Key]
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:470: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = raterInitState[c.internalRaterInterceptRound2Key]
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
noteId ... internalNoteInterceptRound2
0 1783356907102572640 ... 0.208783
1 1817651698652926356 ... -1.930698
2 1819455029834555469 ... -2.641512
3 1819460608976118232 ... 2.181850
4 1832658971833806987 ... 0.118507
... ... ... ...
79423 1719110901046133082 ... -0.284150
79424 1761711989527650551 ... -0.413572
79425 1765805801992528269 ... -0.413611
79426 1739385025395569106 ... 0.563089
79427 1774629591619096646 ... -0.333901
[79428 rows x 4 columns],
raterInitState:
raterParticipantId ... internalRaterInterceptRound2
0 000045A5FA0CF004F68CBF2913506C37D540CF48522D33... ... NaN
1 0001C21FD89AC65310D4D74174C0986CDF457DA24DADAB... ... 0.075967
2 00029D1FDD352D79B5073189C3F2BDF6377581F50D66C1... ... NaN
3 0003E67BB62E658363186A00B13637CF1A58748C4E4ECE... ... -0.153998
4 00053CDCAC04E3692F4A01305C8F3D093CCE221157D539... ... NaN
... ... ... ...
56369 FFF7636C99E1370B663778061CD0AF5458555FDA579F88... ... NaN
56370 FFFA43EFB0AAB3BFD273666FF123BFE69D863B9A2F5E44... ... NaN
56371 FFFBC05DB8408BB532985642C4DE00EC619B062CB60E2E... ... -0.064314
56372 FFFC011F23086D8153F0A3FF336F33EE80521EC35F9ACD... ... NaN
56373 FFFDAB98EE31EC0CC51169937F859D5B676870C6470C19... ... NaN
[56374 rows x 5 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 12367, vs. num we are initializing: 56374
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 12367
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 12367, vs. num we are initializing: 56374
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 12367
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterReputation:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 12367, vs. num we are initializing: 56374
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterReputations: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterReputations: 12367
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 81195, vs. num we are initializing: 79428
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteFactor1s: 79242
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteFactor1s: 1953
INFO:birdwatch.scorer: Original noteScores length: 1750506
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 81195, vs. num we are initializing: 79428
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteIntercepts: 79242
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteIntercepts: 1953
INFO:birdwatch.reputation_matrix_factorization:Final scoring, initial round fitting reputation MF (equivalent to Round 2 in Prescoring - learn note factor)
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=5.754270 | time=0.0s
INFO:birdwatch.scorer: Final noteScores length: 47624
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.879617 | time=0.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.847818 | time=1.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.844625 | time=2.3s
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in score_final, at line 1190: noteScores = noteScores.merge(
PandasTypeError: Output mismatch on numFinalRoundRatings: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_9 Postprocess output elapsed time: 54.36 secs (0.91 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.844300 | time=3.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=140 | loss=2.844249 | time=3.5s
INFO:birdwatch.reputation_matrix_factorization:Final scoring, final round fitting reputation MF: learn just note intercept
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:505: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = savedFinalRoundPrescoringRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 12367, vs. num we are initializing: 56374
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 12367
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.540329 | time=0.0s
INFO:birdwatch.run_scoring:MFGroupScorer_5 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.474979 | time=0.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.473973 | time=1.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.473939 | time=1.9s
INFO:birdwatch.diligence_model:Low diligence final loss: 0.4739
INFO:birdwatch.mf_base_scorer:diligenceNP cols: Index(['noteId', 'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'], dtype='object')
INFO:birdwatch.mf_base_scorer:np cols: Index(['noteId', 'noteIndex', 'internalNoteIntercept', 'internalNoteFactor1',
'internalNoteFactor1_max', 'internalNoteFactor1_median',
'internalNoteFactor1_min', 'internalNoteFactor1_refit_orig',
'internalNoteIntercept_median', 'internalNoteIntercept_refit_orig',
'ratingCount_all', 'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_7 Low Diligence Reputation Model elapsed time: 7.01 secs (0.12 mins)
INFO:birdwatch.mf_base_scorer:About to call compute_scored_notes with MFGroupScorer_7
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 494: noteStats = tagAggregates.merge(noteStats, on=c.noteIdKey, how="outer")
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:compute_scored_notes: compute tag aggregates elapsed time: 3.78 secs (0.06 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:82: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals.drop(columns_to_drop, inplace=True, axis=1)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:84: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = (
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:91: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:95: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:99: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey] = ratings_w_user_totals[
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 499: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on num_voters_interval: result=float64 expected=int64 (allowed)
INFO:birdwatch.constants:compute_scored_notes: compute incorrect aggregates elapsed time: 3.25 secs (0.05 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.12 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.76 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.03 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.66 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.61 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.74 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRHInertia (v1.0)
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.constants:Calling score_notes: GeneralCRHInertia (v1.0) elapsed time: 0.97 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRHInertia (v1.0) elapsed time: 1.59 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: TagFilter (v1.0)
INFO:birdwatch.scoring_rules:Candidate notes prior to tag filtering: 1745208
INFO:birdwatch.scoring_rules:Checking note tags:
INFO:birdwatch.scoring_rules:notHelpfulOther
INFO:birdwatch.scoring_rules:notHelpfulIncorrect
INFO:birdwatch.scoring_rules:notHelpfulSourcesMissingOrUnreliable
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculationOrBias
INFO:birdwatch.scoring_rules:notHelpfulMissingKeyPoints
INFO:birdwatch.scoring_rules:notHelpfulOutdated
INFO:birdwatch.scoring_rules:notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:outlier filtering disabled for tag: notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:notHelpfulArgumentativeOrBiased
INFO:birdwatch.scoring_rules:notHelpfulOffTopic
INFO:birdwatch.scoring_rules:notHelpfulSpamHarassmentOrAbuse
INFO:birdwatch.scoring_rules:notHelpfulIrrelevantSources
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculation
INFO:birdwatch.scoring_rules:notHelpfulNoteNotNeeded
INFO:birdwatch.scoring_rules:Total {note, tag} pairs where tag filter logic triggered: 4582
INFO:birdwatch.scoring_rules:Total unique notes impacted by tag filtering: 2443
INFO:birdwatch.constants:Calling score_notes: TagFilter (v1.0) elapsed time: 2.98 secs (0.05 mins)
INFO:birdwatch.run_scoring:MFGroupScorer_5 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_5 run_scorer_parallelizable: Loading data elapsed time: 22.14 secs (0.37 mins)
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFGroupScorer_5 set to: 4
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/scoring_rules.py, in apply_scoring_rules, at line 1099: noteColumns = noteColumns.merge(
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:Applying scoring rule: TagFilter (v1.0) elapsed time: 3.61 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: CRHSuperThreshold (v1.0)
INFO:birdwatch.constants:Calling score_notes: CRHSuperThreshold (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_5. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.constants:Applying scoring rule: CRHSuperThreshold (v1.0) elapsed time: 0.74 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: ElevatedCRHInertia (v1.0)
INFO:birdwatch.scorer: Ratings after group filter: 5450867
INFO:birdwatch.scorer:MFGroupScorer_6 Filter input elapsed time: 42.99 secs (0.72 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.constants:Calling score_notes: ElevatedCRHInertia (v1.0) elapsed time: 0.95 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: ElevatedCRHInertia (v1.0) elapsed time: 1.60 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterIncorrect (v1.0)
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 4699227, Num Unique Notes Rated: 211221, Num Unique Raters: 39569
INFO:birdwatch.scorer:MFGroupScorer_6 Prepare ratings elapsed time: 2.44 secs (0.04 mins)
INFO:birdwatch.scoring_rules:Total notes impacted by incorrect filtering: 698
INFO:birdwatch.constants:Calling score_notes: FilterIncorrect (v1.0) elapsed time: 2.78 secs (0.05 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
INFO:birdwatch.constants:Applying scoring rule: FilterIncorrect (v1.0) elapsed time: 3.42 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLowDiligence (v1.0)
INFO:birdwatch.helpfulness_scores:Unique Raters: 21925
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 94982
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 23379
INFO:birdwatch.scoring_rules:Total notes impacted by low diligence filtering: 19513
INFO:birdwatch.constants:Calling score_notes: FilterLowDiligence (v1.0) elapsed time: 2.86 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLowDiligence (v1.0) elapsed time: 3.49 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLargeFactor (v1.0)
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 21925
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 2990395
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 2990395
INFO:birdwatch.scoring_rules:Total notes impacted by large factor filtering: 90
INFO:birdwatch.constants:Calling score_notes: FilterLargeFactor (v1.0) elapsed time: 0.78 secs (0.01 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLargeFactor (v1.0) elapsed time: 1.41 secs (0.02 mins)
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 21925, Notes: 210221
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 14.225006065045832
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 136.39201824401368
INFO:birdwatch.matrix_factorization:Correcting loss function to simulate rating per note loss ratio = 14.296365255016083
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.matrix_factorization:epoch 0 0.127536803483963
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09117355197668076
INFO:birdwatch.matrix_factorization:epoch 20 0.13710755109786987
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10831429809331894
INFO:birdwatch.matrix_factorization:epoch 20 0.0995996817946434
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06900053471326828
INFO:birdwatch.matrix_factorization:epoch 40 0.09801977872848511
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06795614212751389
INFO:birdwatch.matrix_factorization:epoch 60 0.09782855212688446
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06773346662521362
INFO:birdwatch.matrix_factorization:Num epochs: 79
INFO:birdwatch.matrix_factorization:epoch 79 0.09780332446098328
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06769677996635437
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1703343689441681
INFO:birdwatch.scorer:MFGroupScorer_6 Final helpfulness-filtered MF elapsed time: 21.15 secs (0.35 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_6 final scoring, about to call diligence with 2990395 final round ratings.
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:467: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
noteInitState[c.internalNoteInterceptKey] = noteInitState[c.internalNoteInterceptRound2Key]
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:470: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = raterInitState[c.internalRaterInterceptRound2Key]
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
noteId internalNoteIntercept internalNoteFactor1 \
0 1699159156060475887 -2.116670 2.276408
1 1708036258310607099 -1.420304 2.767993
2 1708634843616248157 -0.909520 2.826810
3 1708698407043252372 2.160592 0.463363
4 1708722796358963422 -1.104113 3.109181
... ... ... ...
208923 1783304337789219115 -0.282226 0.765389
208924 1831341282007945725 -0.282333 0.765389
208925 1831414634940621056 -0.282371 0.765412
208926 1872283842301583792 1.119859 -2.117167
208927 1872298791140782443 -0.331062 0.838955
internalNoteInterceptRound2
0 -2.116670
1 -1.420304
2 -0.909520
3 2.160592
4 -1.104113
... ...
208923 -0.282226
208924 -0.282333
208925 -0.282371
208926 1.119859
208927 -0.331062
[208928 rows x 4 columns],
raterInitState:
raterParticipantId \
0 000045A5FA0CF004F68CBF2913506C37D540CF48522D33...
1 00018DBB934257251EBCEE91D0722C71B7DD592A571398...
2 0002188E5ED3028646C97CBE9ADCD12CB5B8BFAF8819BD...
3 0002725E706CF18C040E21F30CE2D39994513C3BB8CF58...
4 00029D1FDD352D79B5073189C3F2BDF6377581F50D66C1...
... ...
94977 FFFDAB98EE31EC0CC51169937F859D5B676870C6470C19...
94978 FFFEB058BCC25277E2662DD3E8C0506FB1B23BA4D965EA...
94979 FFFEB27D6E27351D14EB43777F265F694744ABB4B3B7AD...
94980 FFFF0C7BF4089C6436CAB332B309A1A81C21E11CD61CE4...
94981 FFFFAB2FDBC1968F4CFE97A86D88963D702B636365B6CD...
internalRaterIntercept internalRaterFactor1 internalRaterReputation \
0 NaN NaN NaN
1 NaN NaN NaN
2 -0.007653 -2.017097 0.187599
3 NaN NaN NaN
4 NaN NaN NaN
... ... ... ...
94977 NaN NaN NaN
94978 NaN NaN NaN
94979 NaN NaN NaN
94980 NaN NaN NaN
94981 -0.153286 -0.331380 0.446786
internalRaterInterceptRound2
0 NaN
1 NaN
2 -0.007653
3 NaN
4 NaN
... ...
94977 NaN
94978 NaN
94979 NaN
94980 NaN
94981 -0.153286
[94982 rows x 5 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 21925, vs. num we are initializing: 94982
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 21925
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 21925, vs. num we are initializing: 94982
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 21925
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterReputation:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 21925, vs. num we are initializing: 94982
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterReputations: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterReputations: 21925
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 210221, vs. num we are initializing: 208928
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteFactor1s: 203877
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteFactor1s: 6344
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 210221, vs. num we are initializing: 208928
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteIntercepts: 203877
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteIntercepts: 6344
INFO:birdwatch.reputation_matrix_factorization:Final scoring, initial round fitting reputation MF (equivalent to Round 2 in Prescoring - learn note factor)
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=5.512455 | time=0.0s
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.596907 | time=2.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.565194 | time=5.2s
INFO:birdwatch.scorer: Ratings after group filter: 555225
INFO:birdwatch.scorer:MFGroupScorer_5 Filter input elapsed time: 41.13 secs (0.69 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 251048, Num Unique Notes Rated: 23240, Num Unique Raters: 6129
INFO:birdwatch.scorer:MFGroupScorer_5 Prepare ratings elapsed time: 0.17 secs (0.00 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
INFO:birdwatch.helpfulness_scores:Unique Raters: 2990
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 16995
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 3458
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 2990
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 187149
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 187149
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 2990, Notes: 23224
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 8.058430933517052
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 62.591638795986626
INFO:birdwatch.matrix_factorization:Correcting loss function to simulate rating per note loss ratio = 8.295422773393462
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.matrix_factorization:epoch 0 0.15475018322467804
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10480927675962448
INFO:birdwatch.matrix_factorization:epoch 20 0.09636855125427246
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05821274593472481
INFO:birdwatch.matrix_factorization:epoch 40 0.09162192791700363
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05588897317647934
INFO:birdwatch.matrix_factorization:epoch 60 0.09138025343418121
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.056005384773015976
INFO:birdwatch.matrix_factorization:epoch 80 0.09134545177221298
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05613483488559723
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.562311 | time=7.7s
INFO:birdwatch.matrix_factorization:Num epochs: 94
INFO:birdwatch.matrix_factorization:epoch 94 0.09133845567703247
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05623766407370567
INFO:birdwatch.matrix_factorization:Global Intercept: 0.18524184823036194
INFO:birdwatch.scorer:MFGroupScorer_5 Final helpfulness-filtered MF elapsed time: 1.46 secs (0.02 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_5 final scoring, about to call diligence with 187149 final round ratings.
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:467: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
noteInitState[c.internalNoteInterceptKey] = noteInitState[c.internalNoteInterceptRound2Key]
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:470: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = raterInitState[c.internalRaterInterceptRound2Key]
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
noteId internalNoteIntercept internalNoteFactor1 \
0 1685671586295099392 -0.572634 -2.337576
1 1694265338060222629 -3.497196 0.750307
2 1708971742826213665 -1.419062 0.355426
3 1709029742886760650 -1.307871 -0.335284
4 1710469668035801230 -1.403838 0.487615
... ... ... ...
22170 1853499093554770105 -0.327273 -0.712118
22171 1779889399464935794 0.229670 -1.031546
22172 1821313194553700446 0.234071 -1.033639
22173 1821335118532731025 0.231755 -1.033731
22174 1854148348426547432 -0.449657 1.033040
internalNoteInterceptRound2
0 -0.572634
1 -3.497196
2 -1.419062
3 -1.307871
4 -1.403838
... ...
22170 -0.327273
22171 0.229670
22172 0.234071
22173 0.231755
22174 -0.449657
[22175 rows x 4 columns],
raterInitState:
raterParticipantId \
0 00029D1FDD352D79B5073189C3F2BDF6377581F50D66C1...
1 00053CDCAC04E3692F4A01305C8F3D093CCE221157D539...
2 0005983E6E18862483AB372C5B61FEBC1F8A573E7701F9...
3 000F1687C56AB92D846F2B9BFA71AE16D8A88426754E3B...
4 0011AB5425173F62E5D4A1787E34ED324BDD5807D4C3B8...
... ...
16990 FFDC71F0AE061FDEC1E553DBEADDD7EFBD520C6EA87C6F...
16991 FFE87CF4860C52665B228E9F345BB3EE183994416FA6D7...
16992 FFEA6CF8956CF5972B2086A17F147FCC0B59CBD4CE0C7E...
16993 FFF3E935633C6870DE7674D0681C5821BC408073C84A36...
16994 FFF6DBEDE9ED4DC6A61291E33742D1805155E385475E43...
internalRaterIntercept internalRaterFactor1 internalRaterReputation \
0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
... ... ... ...
16990 NaN NaN NaN
16991 NaN NaN NaN
16992 NaN NaN NaN
16993 NaN NaN NaN
16994 NaN NaN NaN
internalRaterInterceptRound2
0 NaN
1 NaN
2 NaN
3 NaN
4 NaN
... ...
16990 NaN
16991 NaN
16992 NaN
16993 NaN
16994 NaN
[16995 rows x 5 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 2990, vs. num we are initializing: 16995
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 2990
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 2990, vs. num we are initializing: 16995
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 2990
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterReputation:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 2990, vs. num we are initializing: 16995
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterReputations: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterReputations: 2990
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 23224, vs. num we are initializing: 22175
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteFactor1s: 22727
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteFactor1s: 497
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 23224, vs. num we are initializing: 22175
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteIntercepts: 22727
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteIntercepts: 497
INFO:birdwatch.reputation_matrix_factorization:Final scoring, initial round fitting reputation MF (equivalent to Round 2 in Prescoring - learn note factor)
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=7.216479 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.579757 | time=0.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.539598 | time=0.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.534247 | time=0.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.533572 | time=0.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=2.533401 | time=0.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=2.533329 | time=1.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=2.533329 | time=1.1s
INFO:birdwatch.reputation_matrix_factorization:Final scoring, final round fitting reputation MF: learn just note intercept
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:505: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = savedFinalRoundPrescoringRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 2990, vs. num we are initializing: 16995
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 2990
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.586357 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.497570 | time=0.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.495975 | time=0.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.495925 | time=0.4s
INFO:birdwatch.diligence_model:Low diligence final loss: 0.4959
INFO:birdwatch.mf_base_scorer:diligenceNP cols: Index(['noteId', 'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'], dtype='object')
INFO:birdwatch.mf_base_scorer:np cols: Index(['noteId', 'noteIndex', 'internalNoteIntercept', 'internalNoteFactor1',
'internalNoteFactor1_max', 'internalNoteFactor1_median',
'internalNoteFactor1_min', 'internalNoteFactor1_refit_orig',
'internalNoteIntercept_median', 'internalNoteIntercept_refit_orig',
'ratingCount_all', 'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_5 Low Diligence Reputation Model elapsed time: 1.89 secs (0.03 mins)
INFO:birdwatch.mf_base_scorer:About to call compute_scored_notes with MFGroupScorer_5
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.562075 | time=10.3s
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.reputation_matrix_factorization:epoch=130 | loss=2.562057 | time=11.1s
INFO:birdwatch.reputation_matrix_factorization:Final scoring, final round fitting reputation MF: learn just note intercept
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:505: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = savedFinalRoundPrescoringRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 21925, vs. num we are initializing: 94982
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 21925
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.430606 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.386664 | time=2.6s
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 40.42 secs (0.67 mins)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 494: noteStats = tagAggregates.merge(noteStats, on=c.noteIdKey, how="outer")
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:compute_scored_notes: compute tag aggregates elapsed time: 2.18 secs (0.04 mins)
INFO:birdwatch.mf_base_scorer:sn cols: Index(['noteId', 'ratingWeight', 'notHelpfulOtherAdjusted',
'notHelpfulIncorrectAdjusted',
'notHelpfulSourcesMissingOrUnreliableAdjusted',
'notHelpfulOpinionSpeculationOrBiasAdjusted',
'notHelpfulMissingKeyPointsAdjusted', 'notHelpfulOutdatedAdjusted',
'notHelpfulHardToUnderstandAdjusted',
'notHelpfulArgumentativeOrBiasedAdjusted', 'notHelpfulOffTopicAdjusted',
'notHelpfulSpamHarassmentOrAbuseAdjusted',
'notHelpfulIrrelevantSourcesAdjusted',
'notHelpfulOpinionSpeculationAdjusted',
'notHelpfulNoteNotNeededAdjusted', 'notHelpfulOtherAdjustedRatio',
'notHelpfulIncorrectAdjustedRatio',
'notHelpfulSourcesMissingOrUnreliableAdjustedRatio',
'notHelpfulOpinionSpeculationOrBiasAdjustedRatio',
'notHelpfulMissingKeyPointsAdjustedRatio',
'notHelpfulOutdatedAdjustedRatio',
'notHelpfulHardToUnderstandAdjustedRatio',
'notHelpfulArgumentativeOrBiasedAdjustedRatio',
'notHelpfulOffTopicAdjustedRatio',
'notHelpfulSpamHarassmentOrAbuseAdjustedRatio',
'notHelpfulIrrelevantSourcesAdjustedRatio',
'notHelpfulOpinionSpeculationAdjustedRatio',
'notHelpfulNoteNotNeededAdjustedRatio', 'helpfulOther',
'helpfulInformative', 'helpfulClear', 'helpfulEmpathetic',
'helpfulGoodSources', 'helpfulUniqueContext', 'helpfulAddressesClaim',
'helpfulImportantContext', 'helpfulUnbiasedLanguage', 'notHelpfulOther',
'notHelpfulIncorrect', 'notHelpfulSourcesMissingOrUnreliable',
'notHelpfulOpinionSpeculationOrBias', 'notHelpfulMissingKeyPoints',
'notHelpfulOutdated', 'notHelpfulHardToUnderstand',
'notHelpfulArgumentativeOrBiased', 'notHelpfulOffTopic',
'notHelpfulSpamHarassmentOrAbuse', 'notHelpfulIrrelevantSources',
'notHelpfulOpinionSpeculation', 'notHelpfulNoteNotNeeded', 'numRatings',
'noteAuthorParticipantId', 'classification', 'currentStatus',
'internalNoteIntercept', 'internalNoteFactor1',
'lowDiligenceNoteIntercept', 'internalNoteFactor1_max',
'internalNoteFactor1_median', 'internalNoteFactor1_min',
'internalNoteFactor1_refit_orig', 'internalNoteIntercept_median',
'internalNoteIntercept_refit_orig', 'ratingCount_all',
'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'notHelpfulIncorrect_interval', 'p_incorrect_user_interval',
'num_voters_interval', 'tf_idf_incorrect_interval',
'internalRatingStatus', 'internalActiveRules', 'activeFilterTags',
'crhBool', 'crnhBool', 'awaitingBool'],
dtype='object')
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:82: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals.drop(columns_to_drop, inplace=True, axis=1)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:84: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = (
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:91: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:95: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:99: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey] = ratings_w_user_totals[
INFO:birdwatch.scorer:MFGroupScorer_7 Final compute scored notes elapsed time: 72.60 secs (1.21 mins)
INFO:birdwatch.scorer:Postprocessing output for MFGroupScorer_7
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.386047 | time=5.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=070 | loss=0.386029 | time=5.9s
INFO:birdwatch.diligence_model:Low diligence final loss: 0.3860
INFO:birdwatch.mf_base_scorer:diligenceNP cols: Index(['noteId', 'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'], dtype='object')
INFO:birdwatch.mf_base_scorer:np cols: Index(['noteId', 'noteIndex', 'internalNoteIntercept', 'internalNoteFactor1',
'internalNoteFactor1_max', 'internalNoteFactor1_median',
'internalNoteFactor1_min', 'internalNoteFactor1_refit_orig',
'internalNoteIntercept_median', 'internalNoteIntercept_refit_orig',
'ratingCount_all', 'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_6 Low Diligence Reputation Model elapsed time: 21.85 secs (0.36 mins)
INFO:birdwatch.mf_base_scorer:About to call compute_scored_notes with MFGroupScorer_6
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 499: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on num_voters_interval: result=float64 expected=int64 (allowed)
INFO:birdwatch.constants:compute_scored_notes: compute incorrect aggregates elapsed time: 2.34 secs (0.04 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.61 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.66 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.61 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.54 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.74 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRHInertia (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRHInertia (v1.0) elapsed time: 0.97 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRHInertia (v1.0) elapsed time: 1.53 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: TagFilter (v1.0)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Candidate notes prior to tag filtering: 1749131
INFO:birdwatch.scoring_rules:Checking note tags:
INFO:birdwatch.scoring_rules:notHelpfulOther
INFO:birdwatch.scoring_rules:notHelpfulIncorrect
INFO:birdwatch.scoring_rules:notHelpfulSourcesMissingOrUnreliable
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculationOrBias
INFO:birdwatch.scoring_rules:notHelpfulMissingKeyPoints
INFO:birdwatch.scoring_rules:notHelpfulOutdated
INFO:birdwatch.scoring_rules:notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:outlier filtering disabled for tag: notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:notHelpfulArgumentativeOrBiased
INFO:birdwatch.scoring_rules:notHelpfulOffTopic
INFO:birdwatch.scoring_rules:notHelpfulSpamHarassmentOrAbuse
INFO:birdwatch.scoring_rules:notHelpfulIrrelevantSources
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculation
INFO:birdwatch.scoring_rules:notHelpfulNoteNotNeeded
INFO:birdwatch.scoring_rules:Total {note, tag} pairs where tag filter logic triggered: 279
INFO:birdwatch.scoring_rules:Total unique notes impacted by tag filtering: 188
INFO:birdwatch.constants:Calling score_notes: TagFilter (v1.0) elapsed time: 2.84 secs (0.05 mins)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/scoring_rules.py, in apply_scoring_rules, at line 1099: noteColumns = noteColumns.merge(
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:Applying scoring rule: TagFilter (v1.0) elapsed time: 3.45 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: CRHSuperThreshold (v1.0)
INFO:birdwatch.constants:Calling score_notes: CRHSuperThreshold (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: CRHSuperThreshold (v1.0) elapsed time: 0.66 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: ElevatedCRHInertia (v1.0)
INFO:birdwatch.constants:Calling score_notes: ElevatedCRHInertia (v1.0) elapsed time: 0.89 secs (0.01 mins)
INFO:birdwatch.constants:Applying scoring rule: ElevatedCRHInertia (v1.0) elapsed time: 1.48 secs (0.02 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterIncorrect (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by incorrect filtering: 71
INFO:birdwatch.constants:Calling score_notes: FilterIncorrect (v1.0) elapsed time: 2.69 secs (0.04 mins)
INFO:birdwatch.matrix_factorization:epoch 40 0.13590402901172638
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10660792887210846
INFO:birdwatch.constants:Applying scoring rule: FilterIncorrect (v1.0) elapsed time: 3.37 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLowDiligence (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by low diligence filtering: 4749
INFO:birdwatch.constants:Calling score_notes: FilterLowDiligence (v1.0) elapsed time: 2.70 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLowDiligence (v1.0) elapsed time: 3.29 secs (0.05 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLargeFactor (v1.0)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 494: noteStats = tagAggregates.merge(noteStats, on=c.noteIdKey, how="outer")
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.scoring_rules:Total notes impacted by large factor filtering: 18
INFO:birdwatch.constants:Calling score_notes: FilterLargeFactor (v1.0) elapsed time: 0.73 secs (0.01 mins)
INFO:birdwatch.constants:compute_scored_notes: compute tag aggregates elapsed time: 8.77 secs (0.15 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLargeFactor (v1.0) elapsed time: 1.28 secs (0.02 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:82: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals.drop(columns_to_drop, inplace=True, axis=1)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:84: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = (
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:91: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:95: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:99: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey] = ratings_w_user_totals[
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 499: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on num_voters_interval: result=float64 expected=int64 (allowed)
INFO:birdwatch.constants:compute_scored_notes: compute incorrect aggregates elapsed time: 7.10 secs (0.12 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.13 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.77 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.03 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.67 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.74 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRHInertia (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRHInertia (v1.0) elapsed time: 0.95 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRHInertia (v1.0) elapsed time: 1.59 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: TagFilter (v1.0)
INFO:birdwatch.scoring_rules:Candidate notes prior to tag filtering: 1738088
INFO:birdwatch.scoring_rules:Checking note tags:
INFO:birdwatch.scoring_rules:notHelpfulOther
INFO:birdwatch.scoring_rules:notHelpfulIncorrect
INFO:birdwatch.scoring_rules:notHelpfulSourcesMissingOrUnreliable
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculationOrBias
INFO:birdwatch.scoring_rules:notHelpfulMissingKeyPoints
INFO:birdwatch.scoring_rules:notHelpfulOutdated
INFO:birdwatch.scoring_rules:notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:outlier filtering disabled for tag: notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:notHelpfulArgumentativeOrBiased
INFO:birdwatch.scoring_rules:notHelpfulOffTopic
INFO:birdwatch.scoring_rules:notHelpfulSpamHarassmentOrAbuse
INFO:birdwatch.scoring_rules:notHelpfulIrrelevantSources
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculation
INFO:birdwatch.scoring_rules:notHelpfulNoteNotNeeded
INFO:birdwatch.scoring_rules:Total {note, tag} pairs where tag filter logic triggered: 9443
INFO:birdwatch.scoring_rules:Total unique notes impacted by tag filtering: 5436
INFO:birdwatch.constants:Calling score_notes: TagFilter (v1.0) elapsed time: 3.01 secs (0.05 mins)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/scoring_rules.py, in apply_scoring_rules, at line 1099: noteColumns = noteColumns.merge(
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:Applying scoring rule: TagFilter (v1.0) elapsed time: 3.66 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: CRHSuperThreshold (v1.0)
INFO:birdwatch.constants:Calling score_notes: CRHSuperThreshold (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: CRHSuperThreshold (v1.0) elapsed time: 0.77 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: ElevatedCRHInertia (v1.0)
INFO:birdwatch.constants:Calling score_notes: ElevatedCRHInertia (v1.0) elapsed time: 0.99 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: ElevatedCRHInertia (v1.0) elapsed time: 1.65 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterIncorrect (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by incorrect filtering: 1489
INFO:birdwatch.constants:Calling score_notes: FilterIncorrect (v1.0) elapsed time: 2.82 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterIncorrect (v1.0) elapsed time: 3.46 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLowDiligence (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by low diligence filtering: 41610
INFO:birdwatch.constants:Calling score_notes: FilterLowDiligence (v1.0) elapsed time: 2.80 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLowDiligence (v1.0) elapsed time: 3.47 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLargeFactor (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by large factor filtering: 90
INFO:birdwatch.constants:Calling score_notes: FilterLargeFactor (v1.0) elapsed time: 0.82 secs (0.01 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLargeFactor (v1.0) elapsed time: 1.46 secs (0.02 mins)
INFO:birdwatch.scorer: Original noteScores length: 1750506
INFO:birdwatch.scorer: Final noteScores length: 8659
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in score_final, at line 1190: noteScores = noteScores.merge(
PandasTypeError: Output mismatch on numFinalRoundRatings: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_7 Postprocess output elapsed time: 55.39 secs (0.92 mins)
INFO:birdwatch.run_scoring:MFGroupScorer_4 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 36.91 secs (0.62 mins)
INFO:birdwatch.mf_base_scorer:sn cols: Index(['noteId', 'ratingWeight', 'notHelpfulOtherAdjusted',
'notHelpfulIncorrectAdjusted',
'notHelpfulSourcesMissingOrUnreliableAdjusted',
'notHelpfulOpinionSpeculationOrBiasAdjusted',
'notHelpfulMissingKeyPointsAdjusted', 'notHelpfulOutdatedAdjusted',
'notHelpfulHardToUnderstandAdjusted',
'notHelpfulArgumentativeOrBiasedAdjusted', 'notHelpfulOffTopicAdjusted',
'notHelpfulSpamHarassmentOrAbuseAdjusted',
'notHelpfulIrrelevantSourcesAdjusted',
'notHelpfulOpinionSpeculationAdjusted',
'notHelpfulNoteNotNeededAdjusted', 'notHelpfulOtherAdjustedRatio',
'notHelpfulIncorrectAdjustedRatio',
'notHelpfulSourcesMissingOrUnreliableAdjustedRatio',
'notHelpfulOpinionSpeculationOrBiasAdjustedRatio',
'notHelpfulMissingKeyPointsAdjustedRatio',
'notHelpfulOutdatedAdjustedRatio',
'notHelpfulHardToUnderstandAdjustedRatio',
'notHelpfulArgumentativeOrBiasedAdjustedRatio',
'notHelpfulOffTopicAdjustedRatio',
'notHelpfulSpamHarassmentOrAbuseAdjustedRatio',
'notHelpfulIrrelevantSourcesAdjustedRatio',
'notHelpfulOpinionSpeculationAdjustedRatio',
'notHelpfulNoteNotNeededAdjustedRatio', 'helpfulOther',
'helpfulInformative', 'helpfulClear', 'helpfulEmpathetic',
'helpfulGoodSources', 'helpfulUniqueContext', 'helpfulAddressesClaim',
'helpfulImportantContext', 'helpfulUnbiasedLanguage', 'notHelpfulOther',
'notHelpfulIncorrect', 'notHelpfulSourcesMissingOrUnreliable',
'notHelpfulOpinionSpeculationOrBias', 'notHelpfulMissingKeyPoints',
'notHelpfulOutdated', 'notHelpfulHardToUnderstand',
'notHelpfulArgumentativeOrBiased', 'notHelpfulOffTopic',
'notHelpfulSpamHarassmentOrAbuse', 'notHelpfulIrrelevantSources',
'notHelpfulOpinionSpeculation', 'notHelpfulNoteNotNeeded', 'numRatings',
'noteAuthorParticipantId', 'classification', 'currentStatus',
'internalNoteIntercept', 'internalNoteFactor1',
'lowDiligenceNoteIntercept', 'internalNoteFactor1_max',
'internalNoteFactor1_median', 'internalNoteFactor1_min',
'internalNoteFactor1_refit_orig', 'internalNoteIntercept_median',
'internalNoteIntercept_refit_orig', 'ratingCount_all',
'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'notHelpfulIncorrect_interval', 'p_incorrect_user_interval',
'num_voters_interval', 'tf_idf_incorrect_interval',
'internalRatingStatus', 'internalActiveRules', 'activeFilterTags',
'crhBool', 'crnhBool', 'awaitingBool'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_5 Final compute scored notes elapsed time: 63.91 secs (1.07 mins)
INFO:birdwatch.scorer:Postprocessing output for MFGroupScorer_5
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.matrix_factorization:Num epochs: 60
INFO:birdwatch.matrix_factorization:epoch 60 0.13572043180465698
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10619454830884933
INFO:birdwatch.constants:Pseudo: fit all notes with raters constant elapsed time: 162.26 secs (2.70 mins)
INFO:birdwatch.run_scoring:MFGroupScorer_4 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_4 run_scorer_parallelizable: Loading data elapsed time: 21.56 secs (0.36 mins)
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFGroupScorer_4 set to: 4
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_4. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.pseudo_raters:------------------
INFO:birdwatch.pseudo_raters:Re-scoring all notes with extra rating added: {'raterParticipantId': '-3', 'raterIndex': 377371, 'internalRaterIntercept': -0.48738948, 'internalRaterFactor1': 1.0582559, 'helpfulNum': 1.0}
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 377370, Notes: 1205353
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INIT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/pseudo_raters.py, in _check_note_parameters_same, at line 90: assert (noteParamsFromNewModel == self.noteParams).all().all()
PandasTypeError: Type expectation mismatch on noteId: found=bool expected=int64
INFO:birdwatch.matrix_factorization:epoch 0 0.16483864188194275
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1265230029821396
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 39.86 secs (0.66 mins)
INFO:birdwatch.mf_base_scorer:sn cols: Index(['noteId', 'ratingWeight', 'notHelpfulOtherAdjusted',
'notHelpfulIncorrectAdjusted',
'notHelpfulSourcesMissingOrUnreliableAdjusted',
'notHelpfulOpinionSpeculationOrBiasAdjusted',
'notHelpfulMissingKeyPointsAdjusted', 'notHelpfulOutdatedAdjusted',
'notHelpfulHardToUnderstandAdjusted',
'notHelpfulArgumentativeOrBiasedAdjusted', 'notHelpfulOffTopicAdjusted',
'notHelpfulSpamHarassmentOrAbuseAdjusted',
'notHelpfulIrrelevantSourcesAdjusted',
'notHelpfulOpinionSpeculationAdjusted',
'notHelpfulNoteNotNeededAdjusted', 'notHelpfulOtherAdjustedRatio',
'notHelpfulIncorrectAdjustedRatio',
'notHelpfulSourcesMissingOrUnreliableAdjustedRatio',
'notHelpfulOpinionSpeculationOrBiasAdjustedRatio',
'notHelpfulMissingKeyPointsAdjustedRatio',
'notHelpfulOutdatedAdjustedRatio',
'notHelpfulHardToUnderstandAdjustedRatio',
'notHelpfulArgumentativeOrBiasedAdjustedRatio',
'notHelpfulOffTopicAdjustedRatio',
'notHelpfulSpamHarassmentOrAbuseAdjustedRatio',
'notHelpfulIrrelevantSourcesAdjustedRatio',
'notHelpfulOpinionSpeculationAdjustedRatio',
'notHelpfulNoteNotNeededAdjustedRatio', 'helpfulOther',
'helpfulInformative', 'helpfulClear', 'helpfulEmpathetic',
'helpfulGoodSources', 'helpfulUniqueContext', 'helpfulAddressesClaim',
'helpfulImportantContext', 'helpfulUnbiasedLanguage', 'notHelpfulOther',
'notHelpfulIncorrect', 'notHelpfulSourcesMissingOrUnreliable',
'notHelpfulOpinionSpeculationOrBias', 'notHelpfulMissingKeyPoints',
'notHelpfulOutdated', 'notHelpfulHardToUnderstand',
'notHelpfulArgumentativeOrBiased', 'notHelpfulOffTopic',
'notHelpfulSpamHarassmentOrAbuse', 'notHelpfulIrrelevantSources',
'notHelpfulOpinionSpeculation', 'notHelpfulNoteNotNeeded', 'numRatings',
'noteAuthorParticipantId', 'classification', 'currentStatus',
'internalNoteIntercept', 'internalNoteFactor1',
'lowDiligenceNoteIntercept', 'internalNoteFactor1_max',
'internalNoteFactor1_median', 'internalNoteFactor1_min',
'internalNoteFactor1_refit_orig', 'internalNoteIntercept_median',
'internalNoteIntercept_refit_orig', 'ratingCount_all',
'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'notHelpfulIncorrect_interval', 'p_incorrect_user_interval',
'num_voters_interval', 'tf_idf_incorrect_interval',
'internalRatingStatus', 'internalActiveRules', 'activeFilterTags',
'crhBool', 'crnhBool', 'awaitingBool'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_6 Final compute scored notes elapsed time: 85.25 secs (1.42 mins)
INFO:birdwatch.scorer:Postprocessing output for MFGroupScorer_6
INFO:birdwatch.scorer: Original noteScores length: 1750506
INFO:birdwatch.scorer: Final noteScores length: 3949
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in score_final, at line 1190: noteScores = noteScores.merge(
PandasTypeError: Output mismatch on numFinalRoundRatings: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_5 Postprocess output elapsed time: 50.14 secs (0.84 mins)
INFO:birdwatch.run_scoring:MFGroupScorer_3 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings after group filter: 1911572
INFO:birdwatch.scorer:MFGroupScorer_4 Filter input elapsed time: 39.07 secs (0.65 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 1529367, Num Unique Notes Rated: 60721, Num Unique Raters: 19245
INFO:birdwatch.scorer:MFGroupScorer_4 Prepare ratings elapsed time: 0.64 secs (0.01 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
INFO:birdwatch.helpfulness_scores:Unique Raters: 9878
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 38413
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 10669
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 9878
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 968084
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 968084
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 9878, Notes: 60651
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 15.961550510296615
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 98.0040494027131
INFO:birdwatch.matrix_factorization:Correcting loss function to simulate rating per note loss ratio = 16.114954798678987
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.matrix_factorization:epoch 0 0.14834263920783997
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.12264454364776611
INFO:birdwatch.matrix_factorization:epoch 20 0.09764505922794342
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06766458600759506
INFO:birdwatch.matrix_factorization:epoch 40 0.09427738934755325
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06417444348335266
INFO:birdwatch.matrix_factorization:epoch 60 0.09402671456336975
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06379815936088562
INFO:birdwatch.matrix_factorization:epoch 80 0.09399324655532837
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06373821943998337
INFO:birdwatch.matrix_factorization:Num epochs: 94
INFO:birdwatch.matrix_factorization:epoch 94 0.09398777782917023
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06372278183698654
INFO:birdwatch.matrix_factorization:Global Intercept: 0.16988325119018555
INFO:birdwatch.scorer:MFGroupScorer_4 Final helpfulness-filtered MF elapsed time: 7.94 secs (0.13 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_4 final scoring, about to call diligence with 968084 final round ratings.
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:467: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
noteInitState[c.internalNoteInterceptKey] = noteInitState[c.internalNoteInterceptRound2Key]
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:470: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = raterInitState[c.internalRaterInterceptRound2Key]
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
noteId internalNoteIntercept internalNoteFactor1 \
0 1682453260345528328 -2.105245 2.579850
1 1708988303926862198 1.432146 0.505378
2 1711418483634741262 -0.973364 1.666879
3 1711435360398356934 -0.364056 1.728364
4 1711499136887931319 -2.191805 0.143735
... ... ... ...
59949 1820850280050618650 0.339240 1.049319
59950 1820850814115557481 0.339505 1.045633
59951 1806138066056404994 -0.535415 -0.787759
59952 1790301132448833854 -0.179646 0.683219
59953 1704681040659521639 -0.284608 -0.807413
internalNoteInterceptRound2
0 -2.105245
1 1.432146
2 -0.973364
3 -0.364056
4 -2.191805
... ...
59949 0.339240
59950 0.339505
59951 -0.535415
59952 -0.179646
59953 -0.284608
[59954 rows x 4 columns],
raterInitState:
raterParticipantId \
0 000045A5FA0CF004F68CBF2913506C37D540CF48522D33...
1 00029D1FDD352D79B5073189C3F2BDF6377581F50D66C1...
2 00053CDCAC04E3692F4A01305C8F3D093CCE221157D539...
3 0005983E6E18862483AB372C5B61FEBC1F8A573E7701F9...
4 000C92F6B8127DF83BE8430A54BCA7ECF08071EC8E00E2...
... ...
38408 FFF3E935633C6870DE7674D0681C5821BC408073C84A36...
38409 FFF6DBEDE9ED4DC6A61291E33742D1805155E385475E43...
38410 FFF89590FF300D0348631F2F16AA908F663A888A3F82E0...
38411 FFFA43EFB0AAB3BFD273666FF123BFE69D863B9A2F5E44...
38412 FFFC011F23086D8153F0A3FF336F33EE80521EC35F9ACD...
internalRaterIntercept internalRaterFactor1 internalRaterReputation \
0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
... ... ... ...
38408 NaN NaN NaN
38409 NaN NaN NaN
38410 0.312969 -0.461409 0.532296
38411 NaN NaN NaN
38412 NaN NaN NaN
internalRaterInterceptRound2
0 NaN
1 NaN
2 NaN
3 NaN
4 NaN
... ...
38408 NaN
38409 NaN
38410 0.312969
38411 NaN
38412 NaN
[38413 rows x 5 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 9878, vs. num we are initializing: 38413
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 9878
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 9878, vs. num we are initializing: 38413
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 9878
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterReputation:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 9878, vs. num we are initializing: 38413
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterReputations: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterReputations: 9878
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 60651, vs. num we are initializing: 59954
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteFactor1s: 59452
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteFactor1s: 1199
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 60651, vs. num we are initializing: 59954
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteIntercepts: 59452
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteIntercepts: 1199
INFO:birdwatch.reputation_matrix_factorization:Final scoring, initial round fitting reputation MF (equivalent to Round 2 in Prescoring - learn note factor)
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=5.006903 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.464097 | time=1.0s
INFO:birdwatch.run_scoring:MFGroupScorer_3 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_3 run_scorer_parallelizable: Loading data elapsed time: 21.76 secs (0.36 mins)
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFGroupScorer_3 set to: 4
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_3. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.436134 | time=1.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.434052 | time=2.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=115 | loss=2.433925 | time=3.4s
INFO:birdwatch.reputation_matrix_factorization:Final scoring, final round fitting reputation MF: learn just note intercept
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:505: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = savedFinalRoundPrescoringRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 9878, vs. num we are initializing: 38413
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 9878
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.407297 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.386404 | time=0.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.386157 | time=1.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.386157 | time=1.7s
INFO:birdwatch.diligence_model:Low diligence final loss: 0.3862
INFO:birdwatch.mf_base_scorer:diligenceNP cols: Index(['noteId', 'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'], dtype='object')
INFO:birdwatch.mf_base_scorer:np cols: Index(['noteId', 'noteIndex', 'internalNoteIntercept', 'internalNoteFactor1',
'internalNoteFactor1_max', 'internalNoteFactor1_median',
'internalNoteFactor1_min', 'internalNoteFactor1_refit_orig',
'internalNoteIntercept_median', 'internalNoteIntercept_refit_orig',
'ratingCount_all', 'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_4 Low Diligence Reputation Model elapsed time: 6.52 secs (0.11 mins)
INFO:birdwatch.mf_base_scorer:About to call compute_scored_notes with MFGroupScorer_4
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.matrix_factorization:epoch 20 0.1349051296710968
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10503225773572922
INFO:birdwatch.scorer: Original noteScores length: 1750506
INFO:birdwatch.scorer: Final noteScores length: 36318
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in score_final, at line 1190: noteScores = noteScores.merge(
PandasTypeError: Output mismatch on numFinalRoundRatings: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_6 Postprocess output elapsed time: 55.18 secs (0.92 mins)
INFO:birdwatch.run_scoring:MFGroupScorer_2 run_scorer_parallelizable just started in parallel: loading data from shared memory.
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 494: noteStats = tagAggregates.merge(noteStats, on=c.noteIdKey, how="outer")
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:compute_scored_notes: compute tag aggregates elapsed time: 3.57 secs (0.06 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:82: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals.drop(columns_to_drop, inplace=True, axis=1)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:84: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = (
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:91: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:95: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:99: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey] = ratings_w_user_totals[
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 499: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on num_voters_interval: result=float64 expected=int64 (allowed)
INFO:birdwatch.constants:compute_scored_notes: compute incorrect aggregates elapsed time: 3.50 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.62 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.12 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.75 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.62 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.61 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.72 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRHInertia (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRHInertia (v1.0) elapsed time: 0.92 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRHInertia (v1.0) elapsed time: 1.48 secs (0.02 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: TagFilter (v1.0)
INFO:birdwatch.scoring_rules:Candidate notes prior to tag filtering: 1747373
INFO:birdwatch.scoring_rules:Checking note tags:
INFO:birdwatch.scoring_rules:notHelpfulOther
INFO:birdwatch.scoring_rules:notHelpfulIncorrect
INFO:birdwatch.scoring_rules:notHelpfulSourcesMissingOrUnreliable
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculationOrBias
INFO:birdwatch.scoring_rules:notHelpfulMissingKeyPoints
INFO:birdwatch.scoring_rules:notHelpfulOutdated
INFO:birdwatch.scoring_rules:notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:outlier filtering disabled for tag: notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:notHelpfulArgumentativeOrBiased
INFO:birdwatch.scoring_rules:notHelpfulOffTopic
INFO:birdwatch.scoring_rules:notHelpfulSpamHarassmentOrAbuse
INFO:birdwatch.scoring_rules:notHelpfulIrrelevantSources
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculation
INFO:birdwatch.scoring_rules:notHelpfulNoteNotNeeded
INFO:birdwatch.scoring_rules:Total {note, tag} pairs where tag filter logic triggered: 3905
INFO:birdwatch.scoring_rules:Total unique notes impacted by tag filtering: 2092
INFO:birdwatch.constants:Calling score_notes: TagFilter (v1.0) elapsed time: 2.83 secs (0.05 mins)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/scoring_rules.py, in apply_scoring_rules, at line 1099: noteColumns = noteColumns.merge(
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:Applying scoring rule: TagFilter (v1.0) elapsed time: 3.43 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: CRHSuperThreshold (v1.0)
INFO:birdwatch.constants:Calling score_notes: CRHSuperThreshold (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: CRHSuperThreshold (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: ElevatedCRHInertia (v1.0)
INFO:birdwatch.constants:Calling score_notes: ElevatedCRHInertia (v1.0) elapsed time: 0.88 secs (0.01 mins)
INFO:birdwatch.constants:Applying scoring rule: ElevatedCRHInertia (v1.0) elapsed time: 1.46 secs (0.02 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterIncorrect (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by incorrect filtering: 531
INFO:birdwatch.constants:Calling score_notes: FilterIncorrect (v1.0) elapsed time: 2.77 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterIncorrect (v1.0) elapsed time: 3.37 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLowDiligence (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by low diligence filtering: 12369
INFO:birdwatch.constants:Calling score_notes: FilterLowDiligence (v1.0) elapsed time: 2.71 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLowDiligence (v1.0) elapsed time: 3.30 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLargeFactor (v1.0)
INFO:birdwatch.run_scoring:MFGroupScorer_2 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_2 run_scorer_parallelizable: Loading data elapsed time: 21.42 secs (0.36 mins)
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFGroupScorer_2 set to: 4
INFO:birdwatch.scoring_rules:Total notes impacted by large factor filtering: 21
INFO:birdwatch.constants:Calling score_notes: FilterLargeFactor (v1.0) elapsed time: 0.74 secs (0.01 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLargeFactor (v1.0) elapsed time: 1.32 secs (0.02 mins)
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_2. Original rating length: 118317340
INFO:birdwatch.scorer: Ratings after topic filter: 118317340
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings after group filter: 6154771
INFO:birdwatch.scorer:MFGroupScorer_3 Filter input elapsed time: 42.65 secs (0.71 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 5512042, Num Unique Notes Rated: 169270, Num Unique Raters: 67680
INFO:birdwatch.scorer:MFGroupScorer_3 Prepare ratings elapsed time: 2.56 secs (0.04 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
INFO:birdwatch.helpfulness_scores:Unique Raters: 34478
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 101066
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 38195
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 34478
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 3236790
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 3236790
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 34478, Notes: 168525
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 19.206586559857588
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 93.87986542142816
INFO:birdwatch.matrix_factorization:Correcting loss function to simulate rating per note loss ratio = 19.308334776093563
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.matrix_factorization:epoch 0 0.1374596357345581
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10155127942562103
INFO:birdwatch.matrix_factorization:epoch 20 0.10550785064697266
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0763513594865799
INFO:birdwatch.matrix_factorization:epoch 40 0.13380275666713715
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10398941487073898
INFO:birdwatch.matrix_factorization:epoch 40 0.10374687612056732
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07503622770309448
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.matrix_factorization:epoch 60 0.10353998094797134
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07484707236289978
INFO:birdwatch.matrix_factorization:Num epochs: 61
INFO:birdwatch.matrix_factorization:epoch 61 0.10353998094797134
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07484707236289978
INFO:birdwatch.matrix_factorization:Global Intercept: 0.17145097255706787
INFO:birdwatch.scorer:MFGroupScorer_3 Final helpfulness-filtered MF elapsed time: 19.26 secs (0.32 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_3 final scoring, about to call diligence with 3236790 final round ratings.
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 37.98 secs (0.63 mins)
INFO:birdwatch.mf_base_scorer:sn cols: Index(['noteId', 'ratingWeight', 'notHelpfulOtherAdjusted',
'notHelpfulIncorrectAdjusted',
'notHelpfulSourcesMissingOrUnreliableAdjusted',
'notHelpfulOpinionSpeculationOrBiasAdjusted',
'notHelpfulMissingKeyPointsAdjusted', 'notHelpfulOutdatedAdjusted',
'notHelpfulHardToUnderstandAdjusted',
'notHelpfulArgumentativeOrBiasedAdjusted', 'notHelpfulOffTopicAdjusted',
'notHelpfulSpamHarassmentOrAbuseAdjusted',
'notHelpfulIrrelevantSourcesAdjusted',
'notHelpfulOpinionSpeculationAdjusted',
'notHelpfulNoteNotNeededAdjusted', 'notHelpfulOtherAdjustedRatio',
'notHelpfulIncorrectAdjustedRatio',
'notHelpfulSourcesMissingOrUnreliableAdjustedRatio',
'notHelpfulOpinionSpeculationOrBiasAdjustedRatio',
'notHelpfulMissingKeyPointsAdjustedRatio',
'notHelpfulOutdatedAdjustedRatio',
'notHelpfulHardToUnderstandAdjustedRatio',
'notHelpfulArgumentativeOrBiasedAdjustedRatio',
'notHelpfulOffTopicAdjustedRatio',
'notHelpfulSpamHarassmentOrAbuseAdjustedRatio',
'notHelpfulIrrelevantSourcesAdjustedRatio',
'notHelpfulOpinionSpeculationAdjustedRatio',
'notHelpfulNoteNotNeededAdjustedRatio', 'helpfulOther',
'helpfulInformative', 'helpfulClear', 'helpfulEmpathetic',
'helpfulGoodSources', 'helpfulUniqueContext', 'helpfulAddressesClaim',
'helpfulImportantContext', 'helpfulUnbiasedLanguage', 'notHelpfulOther',
'notHelpfulIncorrect', 'notHelpfulSourcesMissingOrUnreliable',
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment