Skip to content

Instantly share code, notes, and snippets.

@tuler
Created January 16, 2025 14:05
Show Gist options
  • Save tuler/dee8aa192836b86a7d8a073f243508ea to your computer and use it in GitHub Desktop.
Save tuler/dee8aa192836b86a7d8a073f243508ea to your computer and use it in GitHub Desktop.
community notes successful run
This file has been truncated, but you can view the full file.
INFO:birdwatch.runner:scorer python version: 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0]
INFO:birdwatch.runner:scorer pandas version: 2.2.2
INFO:birdwatch.runner:beginning scorer execution
INFO:birdwatch.process_data:Timestamp of latest rating in data: 2025-01-12 01:03:22.523000
INFO:birdwatch.process_data:Timestamp of latest note in data: 2025-01-12 01:02:59.773000
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_status_history.py, in merge_note_info, at line 31: newNoteStatusHistory = oldNoteStatusHistory.merge(
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_status_history.py, in merge_note_info, at line 31: newNoteStatusHistory = oldNoteStatusHistory.merge(
PandasTypeError: Output mismatch on createdAtMillis: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on createdAtMillis_notes: result=float64 expected=int64 (allowed)
INFO:birdwatch.note_status_history:total notes added to noteStatusHistory: 62133
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_status_history.py, in merge_note_info, at line 57: newNoteStatusHistory[[c.noteIdKey, c.createdAtMillisKey]].merge(
PandasTypeError: Input mismatch on createdAtMillis: left=float64 vs right=int64 (allowed)
PandasTypeError: Merge key mismatch on createdAtMillis: left=float64 vs right=int64 (allowed)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/process_data.py, in _filter_misleading_notes, at line 270: ratings = ratings.merge(
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.process_data:Preprocess Data: Filter misleading notes, starting with 121640095 ratings on 1595616 notes
INFO:birdwatch.process_data: Keeping 87726864 ratings on 1071361 misleading notes
INFO:birdwatch.process_data: Keeping 8970460 ratings on 152922 deleted notes that were previously scored (in note status history)
INFO:birdwatch.process_data: Removing 58590 ratings on 2907 older notes that aren't deleted, but are not-misleading.
INFO:birdwatch.process_data: Removing 9559 ratings on 1133 notes that were deleted and not in note status history (e.g. old).
INFO:birdwatch.process_data:Num Ratings: 121571946, Num Unique Notes Rated: 1591576, Num Unique Raters: 1057435
INFO:birdwatch.process_data:Called filter_input_data_for_testing.
Notes: 1583780, Ratings: 121571946. Max note createdAt: 2025-01-12 01:02:59.773000; Max rating createAt: 2025-01-12 01:03:22.523000
INFO:birdwatch.process_data:After filtering notes and ratings after particular timestamp (=None).
Notes: 1583780, Ratings: 121571946. Max note createdAt: 2025-01-12 01:02:59.773000; Max rating createAt: 2025-01-12 01:03:22.523000
INFO:birdwatch.process_data:After filtering ratings after first status (plus None hours) for notes created in last 14 days.
Notes: 1583780, Ratings: 121571946. Max note createdAt: 2025-01-12 01:02:59.773000; Max rating createAt: 2025-01-12 01:03:22.523000
INFO:birdwatch.process_data:After filtering prescoring notes and ratings to simulate a delay of None hours:
Notes: 1583780, Ratings: 121571946. Max note createdAt: 2025-01-12 01:02:59.773000; Max rating createAt: 2025-01-12 01:03:22.523000
INFO:birdwatch.constants:Compute pair counts dict elapsed time: 13884.14 secs (231.40 mins)
INFO:birdwatch.constants:Compute PMI and minSim elapsed time: 2636.11 secs (43.94 mins)
INFO:birdwatch.constants:Delete unneeded pairs from pairCountsDict elapsed time: 328.19 secs (5.47 mins)
INFO:birdwatch.constants:Aggregate into cliques by post selection similarity elapsed time: 20.45 secs (0.34 mins)
INFO:birdwatch.constants:Compute Post Selection Similarity elapsed time: 17095.69 secs (284.93 mins)
INFO:birdwatch.run_scoring:logging environment variables
INFO:birdwatch.run_scoring:notes total RAM: 125118992 bytes (0.125 GB)
column dtype RAM
0 noteId int64 12670240
1 noteAuthorParticipantId object 12670240
2 createdAtMillis int64 12670240
3 tweetId object 12670240
4 classification object 12670240
5 believable category 1583904
6 harmful category 1583904
7 validationDifficulty category 1583904
8 misleadingOther Int8 3167560
9 misleadingFactualError Int8 3167560
10 misleadingManipulatedMedia Int8 3167560
11 misleadingOutdatedInformation Int8 3167560
12 misleadingMissingImportantContext Int8 3167560
13 misleadingUnverifiedClaimAsFact Int8 3167560
14 misleadingSatire Int8 3167560
15 notMisleadingOther Int8 3167560
16 notMisleadingFactuallyCorrect Int8 3167560
17 notMisleadingOutdatedButNotWhenWritten Int8 3167560
18 notMisleadingClearlySatire Int8 3167560
19 notMisleadingPersonalOpinion Int8 3167560
20 trustworthySources Int8 3167560
21 summary object 12670240
22 isMediaNote Int8 3167560
INFO:birdwatch.run_scoring:ratings total RAM: 11549335002 bytes (11.549 GB)
column dtype RAM
0 noteId int64 972575568
1 raterParticipantId object 972575568
2 createdAtMillis int64 972575568
3 version Int8 243143892
4 agree Int8 243143892
5 disagree Int8 243143892
6 helpful Int8 243143892
7 notHelpful Int8 243143892
8 helpfulnessLevel category 121572078
9 helpfulOther Int8 243143892
10 helpfulInformative Int8 243143892
11 helpfulClear Int8 243143892
12 helpfulEmpathetic Int8 243143892
13 helpfulGoodSources Int8 243143892
14 helpfulUniqueContext Int8 243143892
15 helpfulAddressesClaim Int8 243143892
16 helpfulImportantContext Int8 243143892
17 helpfulUnbiasedLanguage Int8 243143892
18 notHelpfulOther Int8 243143892
19 notHelpfulIncorrect Int8 243143892
20 notHelpfulSourcesMissingOrUnreliable Int8 243143892
21 notHelpfulOpinionSpeculationOrBias Int8 243143892
22 notHelpfulMissingKeyPoints Int8 243143892
23 notHelpfulOutdated Int8 243143892
24 notHelpfulHardToUnderstand Int8 243143892
25 notHelpfulArgumentativeOrBiased Int8 243143892
26 notHelpfulOffTopic Int8 243143892
27 notHelpfulSpamHarassmentOrAbuse Int8 243143892
28 notHelpfulIrrelevantSources Int8 243143892
29 notHelpfulOpinionSpeculation Int8 243143892
30 notHelpfulNoteNotNeeded Int8 243143892
31 ratedOnTweetId int64 972575568
32 helpfulNum float64 972575568
INFO:birdwatch.run_scoring:noteStatusHistory total RAM: 230089929 bytes (0.230 GB)
column dtype RAM
0 noteId int64 14269032
1 noteAuthorParticipantId object 14269032
2 createdAtMillis float64 14269032
3 timestampMillisOfFirstNonNMRStatus float64 14269032
4 firstNonNMRStatus category 1783753
5 timestampMillisOfCurrentStatus float64 14269032
6 currentStatus category 1783761
7 timestampMillisOfLatestNonNMRStatus float64 14269032
8 mostRecentNonNMRStatus category 1783753
9 timestampMillisOfStatusLock float64 14269032
10 lockedStatus category 1783761
11 timestampMillisOfRetroLock float64 14269032
12 currentCoreStatus category 1783761
13 currentExpansionStatus category 1783761
14 currentGroupStatus category 1783761
15 currentDecidedBy category 1784377
16 currentModelingGroup float64 14269032
17 timestampMillisOfMostRecentStatusChange float64 14269032
18 timestampMillisOfNmrDueToMinStableCrhTime float64 14269032
19 currentMultiGroupStatus category 1783761
20 currentModelingMultiGroup float64 14269032
21 timestampMinuteOfFinalScoringOutput float64 14269032
22 timestampMillisOfFirstNmrDueToMinStableCrhTime float64 14269032
23 classification object 14269032
INFO:birdwatch.run_scoring:userEnrollment total RAM: 60314631 bytes (0.060 GB)
column dtype RAM
0 participantId object 8465208
1 enrollmentState object 8465208
2 successfulRatingNeededToEarnIn int64 8465208
3 timestampOfLastStateChange int64 8465208
4 timestampOfLastEarnOut float64 8465208
5 modelingPopulation category 1058175
6 modelingGroup float64 8465208
7 numberOfTimesEarnedOut int64 8465208
INFO:birdwatch.constants:Logging Prescoring Inputs Initial RAM usage elapsed time: 0.04 secs (0.00 mins)
INFO:birdwatch.constants:Get Note Topics: Prepare Post Text elapsed time: 17.03 secs (0.28 mins)
INFO:birdwatch.topic_model: Notes unassigned due to multiple matches: 1737
INFO:birdwatch.constants:Get Note Topics: Make Seed Labels elapsed time: 83.71 secs (1.40 mins)
INFO:birdwatch.topic_model: Initial vocabulary length: 2211370
INFO:birdwatch.topic_model: Total tokens to filter: 13
INFO:birdwatch.topic_model: Total identified stopwords: 1720
INFO:birdwatch.constants:Get Note Topics: Get Stop Words elapsed time: 88.33 secs (1.47 mins)
INFO:birdwatch.constants:Get Note Topics: Train Model elapsed time: 422.55 secs (7.04 mins)
INFO:birdwatch.topic_model:Assigning notes to topics:
INFO:birdwatch.constants:Get Note Topics: Predict elapsed time: 82.19 secs (1.37 mins)
INFO:birdwatch.topic_model: Balanced accuracy on raw predictions: 0.7085042641360098
INFO:birdwatch.topic_model: Post Topic assignment results: [908706 26730 54332 2365]
INFO:birdwatch.topic_model: Note Topic assignment results:
noteTopic
GazaConflict 112514
UkraineConflict 45735
MessiRonaldo 4054
Name: count, dtype: int64
INFO:birdwatch.constants:Get Note Topics: Merge and assign predictions elapsed time: 1.84 secs (0.03 mins)
INFO:birdwatch.constants:Note Topic Assignment elapsed time: 712.33 secs (11.87 mins)
INFO:birdwatch.run_scoring:ratings summary before PSS: 6c81e0cfe5486d369403b28d15ed7c7d8fd7276d885f1f189f668f9c29f7ae6e
INFO:birdwatch.run_scoring:Post Selection Similarity Prescoring: begin with 121571946 ratings.
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/post_selection_similarity.py, in filter_ratings_by_post_selection_similarity, at line 85: ratings.merge(
PandasTypeError: Output mismatch on postSelectionValue: result=float64 expected=int64 (allowed)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/post_selection_similarity.py, in filter_ratings_by_post_selection_similarity, at line 85: ratings.merge(
PandasTypeError: Input mismatch on postSelectionValue: left=float64 vs right=int64 (allowed)
PandasTypeError: Output mismatch on postSelectionValue_note_author: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/post_selection_similarity.py:111: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratingsWithPostSelectionSimilarityValue.sort_values(
/home/ubuntu/communitynotes/sourcecode/scoring/post_selection_similarity.py:114: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratingsWithPostSelectionSimilarityValue.drop_duplicates(
INFO:birdwatch.run_scoring:Post Selection Similarity Prescoring: 120945188 ratings remaining.
INFO:birdwatch.constants:Filter ratings by Post Selection Similarity elapsed time: 296.48 secs (4.94 mins)
INFO:birdwatch.run_scoring:ratings summary after PSS: 2f7e79680fe98dc326fd2a959a33ea72580b7fede120bb12cdecb47f701dda4a
INFO:birdwatch.run_scoring:Error converting user IDs to ints. IDs will remain as strings. ValueError("invalid literal for int() with base 10: 'F35972BBD2F99515FD974E9C7AFD899970F2E4A59115132FAD59EBCB74C0ABE6'")
INFO:birdwatch.run_scoring:notes total RAM: 125118992 bytes (0.125 GB)
column dtype RAM
0 noteId int64 12670240
1 noteAuthorParticipantId object 12670240
2 createdAtMillis int64 12670240
3 tweetId object 12670240
4 classification object 12670240
5 believable category 1583904
6 harmful category 1583904
7 validationDifficulty category 1583904
8 misleadingOther Int8 3167560
9 misleadingFactualError Int8 3167560
10 misleadingManipulatedMedia Int8 3167560
11 misleadingOutdatedInformation Int8 3167560
12 misleadingMissingImportantContext Int8 3167560
13 misleadingUnverifiedClaimAsFact Int8 3167560
14 misleadingSatire Int8 3167560
15 notMisleadingOther Int8 3167560
16 notMisleadingFactuallyCorrect Int8 3167560
17 notMisleadingOutdatedButNotWhenWritten Int8 3167560
18 notMisleadingClearlySatire Int8 3167560
19 notMisleadingPersonalOpinion Int8 3167560
20 trustworthySources Int8 3167560
21 summary object 12670240
22 isMediaNote Int8 3167560
INFO:birdwatch.run_scoring:ratings total RAM: 13424916000 bytes (13.425 GB)
column dtype RAM
0 noteId int64 967561504
1 raterParticipantId object 967561504
2 createdAtMillis int64 967561504
3 version Int8 241890376
4 agree Int8 241890376
5 disagree Int8 241890376
6 helpful Int8 241890376
7 notHelpful Int8 241890376
8 helpfulnessLevel category 120945320
9 helpfulOther Int8 241890376
10 helpfulInformative Int8 241890376
11 helpfulClear Int8 241890376
12 helpfulEmpathetic Int8 241890376
13 helpfulGoodSources Int8 241890376
14 helpfulUniqueContext Int8 241890376
15 helpfulAddressesClaim Int8 241890376
16 helpfulImportantContext Int8 241890376
17 helpfulUnbiasedLanguage Int8 241890376
18 notHelpfulOther Int8 241890376
19 notHelpfulIncorrect Int8 241890376
20 notHelpfulSourcesMissingOrUnreliable Int8 241890376
21 notHelpfulOpinionSpeculationOrBias Int8 241890376
22 notHelpfulMissingKeyPoints Int8 241890376
23 notHelpfulOutdated Int8 241890376
24 notHelpfulHardToUnderstand Int8 241890376
25 notHelpfulArgumentativeOrBiased Int8 241890376
26 notHelpfulOffTopic Int8 241890376
27 notHelpfulSpamHarassmentOrAbuse Int8 241890376
28 notHelpfulIrrelevantSources Int8 241890376
29 notHelpfulOpinionSpeculation Int8 241890376
30 notHelpfulNoteNotNeeded Int8 241890376
31 ratedOnTweetId int64 967561504
32 helpfulNum float64 967561504
33 postSelectionValue float64 967561504
34 postSelectionValue_note_author float64 967561504
INFO:birdwatch.run_scoring:noteStatusHistory total RAM: 230089929 bytes (0.230 GB)
column dtype RAM
0 noteId int64 14269032
1 noteAuthorParticipantId object 14269032
2 createdAtMillis float64 14269032
3 timestampMillisOfFirstNonNMRStatus float64 14269032
4 firstNonNMRStatus category 1783753
5 timestampMillisOfCurrentStatus float64 14269032
6 currentStatus category 1783761
7 timestampMillisOfLatestNonNMRStatus float64 14269032
8 mostRecentNonNMRStatus category 1783753
9 timestampMillisOfStatusLock float64 14269032
10 lockedStatus category 1783761
11 timestampMillisOfRetroLock float64 14269032
12 currentCoreStatus category 1783761
13 currentExpansionStatus category 1783761
14 currentGroupStatus category 1783761
15 currentDecidedBy category 1784377
16 currentModelingGroup float64 14269032
17 timestampMillisOfMostRecentStatusChange float64 14269032
18 timestampMillisOfNmrDueToMinStableCrhTime float64 14269032
19 currentMultiGroupStatus category 1783761
20 currentModelingMultiGroup float64 14269032
21 timestampMinuteOfFinalScoringOutput float64 14269032
22 timestampMillisOfFirstNmrDueToMinStableCrhTime float64 14269032
23 classification object 14269032
INFO:birdwatch.run_scoring:userEnrollment total RAM: 60314631 bytes (0.060 GB)
column dtype RAM
0 participantId object 8465208
1 enrollmentState object 8465208
2 successfulRatingNeededToEarnIn int64 8465208
3 timestampOfLastStateChange int64 8465208
4 timestampOfLastEarnOut float64 8465208
5 modelingPopulation category 1058175
6 modelingGroup float64 8465208
7 numberOfTimesEarnedOut int64 8465208
INFO:birdwatch.constants:Logging Prescoring Inputs RAM usage before _run_scorers elapsed time: 0.04 secs (0.00 mins)
INFO:birdwatch.run_scoring:Starting parallel scorer execution with 23 scorers.
Patching pandas
Pairs dict used 42.949673056GB RAM at max
Pairs dict used 42.949673056GB RAM after deleted unneeded pairs
SHELL: /bin/bash
PWD: /home/ubuntu/communitynotes/sourcecode
LOGNAME: ubuntu
XDG_SESSION_TYPE: tty
MOTD_SHOWN: pam
HOME: /home/ubuntu
LANG: C.UTF-8
LS_COLORS: rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=00:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.zst=01;31:*.tzst=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.wim=01;31:*.swm=01;31:*.dwm=01;31:*.esd=01;31:*.jpg=01;35:*.jpeg=01;35:*.mjpg=01;35:*.mjpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.webp=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=00;36:*.au=00;36:*.flac=00;36:*.m4a=00;36:*.mid=00;36:*.midi=00;36:*.mka=00;36:*.mp3=00;36:*.mpc=00;36:*.ogg=00;36:*.ra=00;36:*.wav=00;36:*.oga=00;36:*.opus=00;36:*.spx=00;36:*.xspf=00;36:
VIRTUAL_ENV: /home/ubuntu/communitynotes/.env
SSH_CONNECTION: 71.168.238.143 62078 172.31.29.67 22
LESSCLOSE: /usr/bin/lesspipe %s %s
XDG_SESSION_CLASS: user
TERM: xterm-256color
LESSOPEN: | /usr/bin/lesspipe %s
USER: ubuntu
SHLVL: 0
XDG_SESSION_ID: 1
VIRTUAL_ENV_PROMPT: (.env)
XDG_RUNTIME_DIR: /run/user/1000
PS1: (.env) \[\e]0;\u@\h: \w\a\]${debian_chroot:+($debian_chroot)}\[\033[01;32m\]\u@\h\[\033[00m\]:\[\033[01;34m\]\w\[\033[00m\]\$
SSH_CLIENT: 71.168.238.143 62078 22
XDG_DATA_DIRS: /usr/local/share:/usr/share:/var/lib/snapd/desktop
PATH: /home/ubuntu/communitynotes/.env/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
DBUS_SESSION_BUS_ADDRESS: unix:path=/run/user/1000/bus
SSH_TTY: /dev/pts/0
OLDPWD: /home/ubuntu/communitynotes
_: /home/ubuntu/communitynotes/.env/bin/python3
KMP_INIT_AT_FORK: FALSE
KMP_DUPLICATE_LIB_OK: True
[Pipeline] .... (step 1 of 3) Processing UnigramEncoder, total= 1.4min
[Pipeline] ............. (step 2 of 3) Processing tfidf, total= 2.0s
[Pipeline] ........ (step 3 of 3) Processing Classifier, total= 5.6min
INFO:birdwatch.run_scoring:MFCoreScorer run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.run_scoring:ReputationScorer run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.run_scoring:MFExpansionScorer run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.run_scoring:MFExpansionPlusScorer run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.run_scoring:MFGroupScorer_12 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.run_scoring:MFGroupScorer_13 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.run_scoring:ReputationScorer run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:ReputationScorer run_scorer_parallelizable: Loading data elapsed time: 30.39 secs (0.51 mins)
INFO:birdwatch.run_scoring:MFGroupScorer_12 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_12 run_scorer_parallelizable: Loading data elapsed time: 30.40 secs (0.51 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for ReputationScorer set to: 12
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFGroupScorer_12 set to: 4
INFO:birdwatch.run_scoring:MFGroupScorer_13 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_13 run_scorer_parallelizable: Loading data elapsed time: 31.34 secs (0.52 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFGroupScorer_13 set to: 8
INFO:birdwatch.run_scoring:MFExpansionPlusScorer run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFExpansionPlusScorer run_scorer_parallelizable: Loading data elapsed time: 33.15 secs (0.55 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFExpansionPlusScorer set to: 12
INFO:birdwatch.run_scoring:MFCoreScorer run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFCoreScorer run_scorer_parallelizable: Loading data elapsed time: 33.19 secs (0.55 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFCoreScorer set to: 12
INFO:birdwatch.run_scoring:MFExpansionScorer run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFExpansionScorer run_scorer_parallelizable: Loading data elapsed time: 33.36 secs (0.56 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFExpansionScorer set to: 12
INFO:birdwatch.scorer:Filtering ratings for ReputationScorer. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_12. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_13. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.scorer:Filtering ratings for MFCoreScorer. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.scorer:Filtering ratings for MFExpansionScorer. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.scorer:Filtering ratings for MFExpansionPlusScorer. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings after group filter: 787651
INFO:birdwatch.scorer:MFGroupScorer_12 Filter input elapsed time: 47.57 secs (0.79 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.mf_base_scorer:ratings summary MFGroupScorer_12: 0f90465b45e33ddc4e6ad35e4eb90f44f73f27066c6227a98a420d691f83317e
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 454147, Num Unique Notes Rated: 31788, Num Unique Raters: 6778
INFO:birdwatch.scorer:MFGroupScorer_12 Prepare ratings elapsed time: 0.30 secs (0.01 mins)
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFGroupScorer_12: 810b44a434074c6798e27cfb055f3129722e6549fd1448e74a0141bbe3c1c0c4
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFGroupScorer_12: 6f492efd4f4511d61fd17a59c8e01c6947c592b05ce271b1f1bd38d02d012c73
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFGroupScorer_12: 1399dc2994266dc0c33b0e8cbb6bd1846586e58449dac3e640a99ce2ffc5effa
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 6778, Notes: 31788
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 14.286743425191895
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 67.00309825907347
INFO:birdwatch.matrix_factorization:epoch 0 6.580998420715332
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.090514183044434
INFO:birdwatch.matrix_factorization:epoch 20 0.3292791247367859
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.26007941365242004
INFO:birdwatch.matrix_factorization:epoch 40 0.15845359861850739
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.12058430165052414
INFO:birdwatch.matrix_factorization:epoch 60 0.11117659509181976
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07749021053314209
INFO:birdwatch.matrix_factorization:epoch 80 0.10526006668806076
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07270617038011551
INFO:birdwatch.scorer: Ratings after group filter: 35923731
INFO:birdwatch.matrix_factorization:epoch 100 0.10454562306404114
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07203452289104462
INFO:birdwatch.matrix_factorization:epoch 120 0.10445060580968857
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0719677060842514
INFO:birdwatch.scorer: Ratings after group filter: 120945188
INFO:birdwatch.matrix_factorization:epoch 140 0.104437917470932
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07196587324142456
INFO:birdwatch.scorer:MFGroupScorer_13 Filter input elapsed time: 56.90 secs (0.95 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.matrix_factorization:Num epochs: 147
INFO:birdwatch.matrix_factorization:epoch 147 0.10443714261054993
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07196403294801712
INFO:birdwatch.matrix_factorization:Global Intercept: 0.18704961240291595
INFO:birdwatch.scorer:MFGroupScorer_12 First MF/stable init elapsed time: 7.85 secs (0.13 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFGroupScorer_12
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFExpansionPlusScorer Filter input elapsed time: 58.52 secs (0.98 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.66 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.73 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.62 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.59 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.scorer: Ratings after group filter: 104368644
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.scorer:ReputationScorer Filter input elapsed time: 67.01 secs (1.12 mins)
INFO:birdwatch.reputation_scorer:seeding with 0
INFO:birdwatch.scorer: Ratings after group filter: 104368644
INFO:birdwatch.scorer: Ratings after group filter: 120942984
INFO:birdwatch.scorer:MFCoreScorer Filter input elapsed time: 66.88 secs (1.11 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.scorer:MFExpansionScorer Filter input elapsed time: 69.20 secs (1.15 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.mf_base_scorer:ratings summary MFGroupScorer_13: b8a4d412a7493bc9e5797fdcf97b4251af03cae245b70c1f61201b0eba7a1f9e
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 35.79 secs (0.60 mins)
INFO:birdwatch.scorer:MFGroupScorer_12 Compute scored notes elapsed time: 43.65 secs (0.73 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.note_ratings:Total ratings: 787531 post-tombstones and 120 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 623486, including 623486 post-tombstones and 0 pre-tombstones.
INFO:birdwatch.note_ratings:Total valid ratings: 41592
INFO:birdwatch.scorer:MFGroupScorer_12 Compute valid ratings elapsed time: 1.17 secs (0.02 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_12 Helpfulness scores pre-harassment elapsed time: 0.15 secs (0.00 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 6778
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 23120
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 5936
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 5266
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 454147
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 384412
INFO:birdwatch.scorer:MFGroupScorer_12 Filtering by helpfulness score elapsed time: 0.52 secs (0.01 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 252520
1 16324
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 115568
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 225641, Num Unique Notes Rated: 17556, Num Unique Raters: 4618
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 214444
1 11197
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.049623073820803845
INFO:birdwatch.matrix_factorization:Using pos weight: 19.151915691703135 with BCEWithLogitsLoss
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 4618, Notes: 17556
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 12.852642971064023
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 48.861195322650495
INFO:birdwatch.matrix_factorization:epoch 0 3.402225971221924
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.4904992580413818
INFO:birdwatch.matrix_factorization:epoch 20 0.7329317927360535
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.39929473400115967
INFO:birdwatch.matrix_factorization:epoch 40 0.4511271119117737
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2659628987312317
INFO:birdwatch.matrix_factorization:epoch 60 0.41279053688049316
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2530340850353241
INFO:birdwatch.matrix_factorization:epoch 80 0.40753090381622314
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2509241998195648
INFO:birdwatch.matrix_factorization:epoch 100 0.40611767768859863
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2500147521495819
INFO:birdwatch.matrix_factorization:Num epochs: 116
INFO:birdwatch.matrix_factorization:epoch 116 0.4058106541633606
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.24984769523143768
INFO:birdwatch.matrix_factorization:Global Intercept: -0.2988259494304657
INFO:birdwatch.scorer:MFGroupScorer_12 Harassment tag consensus elapsed time: 3.33 secs (0.06 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFGroupScorer_12 Helpfulness scores post-harassment elapsed time: 0.23 secs (0.00 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 6778
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 23120
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 5556
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 4886
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 454147
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 319849
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 4886, Notes: 31768
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 10.068276252833039
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 65.46234138354482
INFO:birdwatch.matrix_factorization:epoch 0 0.37545326352119446
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3019244372844696
INFO:birdwatch.matrix_factorization:epoch 20 0.10181743651628494
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06601089984178543
INFO:birdwatch.matrix_factorization:epoch 40 0.10000446438789368
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06784423440694809
INFO:birdwatch.matrix_factorization:epoch 60 0.09862642735242844
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06478048115968704
INFO:birdwatch.matrix_factorization:epoch 80 0.09857840090990067
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06496739387512207
INFO:birdwatch.matrix_factorization:epoch 100 0.0985577404499054
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06467646360397339
INFO:birdwatch.matrix_factorization:Num epochs: 103
INFO:birdwatch.matrix_factorization:epoch 103 0.09855896979570389
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06483707576990128
INFO:birdwatch.matrix_factorization:Global Intercept: 0.18792936205863953
INFO:birdwatch.constants:Final round MF elapsed time: 4.30 secs (0.07 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_12 prescoring, about to call diligence with 319849 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 001041D12A03F39CCB40BEA9458C469323254EEC76348B... -0.150372
1 002A62303516D0CCE7BCBD143AE53FACB0FE03168AEA4E... 0.201533
2 0037306269989273D720BBD181462AC844B31CB9003939... -0.263402
3 0049F294210C39AE0E4AECF5FC2AC7FC51B7E09B968CC3... 0.116172
4 00661AF4F42FD3F9F04048E1F668A3ADB341546490E117... 0.028281
... ... ...
4881 FF9126CC43A7EAF83EA0D93F82BD392D8E20DFBA7E2C90... 0.031915
4882 FFA492BC3E2F5B0DF00DC824605BC9FA92EB3DB63A4042... -0.464677
4883 FFA9BCEF8D874B50FCC1914BB47BE36B2BCAD5EC1396CD... 0.516195
4884 FFB689E24DF9F3E4E9DB93A95E13168392B1382A78C446... 0.012655
4885 FFEEE02BCED1134EB1C57875779C03F2135B72BB4C8E7F... 0.547901
[4886 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 4886, vs. num we are initializing: 4886
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 4886
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=17.751905 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.423125 | time=0.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.969961 | time=1.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.888476 | time=2.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.860836 | time=3.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=2.846481 | time=3.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=2.837612 | time=4.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=2.831625 | time=5.3s
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 34911348, Num Unique Notes Rated: 619472, Num Unique Raters: 164261
INFO:birdwatch.scorer:MFGroupScorer_13 Prepare ratings elapsed time: 20.85 secs (0.35 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=2.827309 | time=6.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=2.824230 | time=6.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=2.821960 | time=7.6s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(0.2406, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=2.821896 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.744053 | time=0.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.734060 | time=1.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.733243 | time=2.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=100 | loss=1.733213 | time=2.4s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.549105 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.476168 | time=0.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.475229 | time=0.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.475190 | time=1.1s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(1.1678, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 2.8220, 1.7332, 0.4752
INFO:birdwatch.scorer:MFGroupScorer_12 Low Diligence MF elapsed time: 11.51 secs (0.19 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.65 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.30 secs (0.01 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.97 secs (0.02 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.04 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.73 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.65 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.77 secs (0.01 mins)
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 102895565, Num Unique Notes Rated: 1227415, Num Unique Raters: 599301
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFGroupScorer_13: ab6936ebf2558b11024124b8e08611af93010a3679bb847418ff84878ea6323f
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFGroupScorer_13: 6f492efd4f4511d61fd17a59c8e01c6947c592b05ce271b1f1bd38d02d012c73
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFGroupScorer_13: 1399dc2994266dc0c33b0e8cbb6bd1846586e58449dac3e640a99ce2ffc5effa
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 37.09 secs (0.62 mins)
INFO:birdwatch.constants:MFGroupScorer_12: Compute tag thresholds for percentiles elapsed time: 0.79 secs (0.01 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.run_scoring:MFGroupScorer_11 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 164261, Notes: 619472
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 56.35661983108195
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 212.53583017271293
INFO:birdwatch.matrix_factorization:epoch 0 6.640757083892822
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.202917098999023
INFO:birdwatch.mf_base_scorer:ratings summary MFCoreScorer: 15e2c97fcaf014c5ae01f848c334cfab12909e7167710283188e965b667e1647
INFO:birdwatch.run_scoring:MFGroupScorer_11 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_11 run_scorer_parallelizable: Loading data elapsed time: 23.84 secs (0.40 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFGroupScorer_11 set to: 4
INFO:birdwatch.mf_base_scorer:ratings summary MFExpansionPlusScorer: 2f7e79680fe98dc326fd2a959a33ea72580b7fede120bb12cdecb47f701dda4a
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_11. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.mf_base_scorer:ratings summary MFExpansionScorer: af66915ace818d9099ed269e949212ce39c97e4e3ba8043b77d29542f9a73ef2
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.matrix_factorization:epoch 20 0.23661787807941437
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1908271461725235
INFO:birdwatch.scorer: Ratings after group filter: 1761412
INFO:birdwatch.scorer:MFGroupScorer_11 Filter input elapsed time: 49.46 secs (0.82 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.mf_base_scorer:ratings summary MFGroupScorer_11: 9ef0dff96d49113f31d12c854119a519c98b4e2541e9fb78b57b0a770bbcb812
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 153182, Notes: 125844
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 67.92280124598709
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 55.80079252131451
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 1118331, Num Unique Notes Rated: 93288, Num Unique Raters: 8833
INFO:birdwatch.scorer:MFGroupScorer_11 Prepare ratings elapsed time: 0.75 secs (0.01 mins)
INFO:birdwatch.matrix_factorization:epoch 0 6.598752498626709
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.155682563781738
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFGroupScorer_11: e618bddc9deb549a78f04c0450c358ebf60a2163ffed5131f304f98211bf5d5a
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFGroupScorer_11: 6f492efd4f4511d61fd17a59c8e01c6947c592b05ce271b1f1bd38d02d012c73
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 102895565, Num Unique Notes Rated: 1227415, Num Unique Raters: 599301
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFGroupScorer_11: 1399dc2994266dc0c33b0e8cbb6bd1846586e58449dac3e640a99ce2ffc5effa
INFO:birdwatch.scorer:MFCoreScorer Prepare ratings elapsed time: 60.26 secs (1.00 mins)
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 8833, Notes: 93288
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 11.987940571134551
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 126.60828710517379
INFO:birdwatch.matrix_factorization:epoch 0 6.586675643920898
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.107373237609863
INFO:birdwatch.matrix_factorization:epoch 20 0.318657249212265
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.23853722214698792
INFO:birdwatch.matrix_factorization:epoch 40 0.18262220919132233
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.14924296736717224
INFO:birdwatch.matrix_factorization:epoch 20 0.37755173444747925
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.27198973298072815
INFO:birdwatch.matrix_factorization:epoch 60 0.12299879640340805
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0905485600233078
INFO:birdwatch.matrix_factorization:epoch 80 0.10585077106952667
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07555652409791946
INFO:birdwatch.matrix_factorization:epoch 100 0.10382040590047836
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07392773777246475
INFO:birdwatch.matrix_factorization:epoch 120 0.10356181859970093
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07373917102813721
INFO:birdwatch.matrix_factorization:epoch 140 0.10352914035320282
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0737101137638092
INFO:birdwatch.matrix_factorization:epoch 40 0.1255543828010559
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0952415019273758
INFO:birdwatch.matrix_factorization:Num epochs: 157
INFO:birdwatch.matrix_factorization:epoch 157 0.10352528840303421
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07370838522911072
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1658429205417633
INFO:birdwatch.scorer:MFGroupScorer_11 First MF/stable init elapsed time: 18.34 secs (0.31 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFGroupScorer_11
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.62 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.75 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.03 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.64 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:epoch 60 0.09576630592346191
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07156948745250702
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.62 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 119170712, Num Unique Notes Rated: 1321123, Num Unique Raters: 760595
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.72 secs (0.01 mins)
INFO:birdwatch.scorer:MFExpansionPlusScorer Prepare ratings elapsed time: 75.84 secs (1.26 mins)
INFO:birdwatch.matrix_factorization:epoch 80 0.09140421450138092
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06861695647239685
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 119168555, Num Unique Notes Rated: 1321120, Num Unique Raters: 760575
INFO:birdwatch.scorer:MFExpansionScorer Prepare ratings elapsed time: 75.57 secs (1.26 mins)
INFO:birdwatch.matrix_factorization:epoch 100 0.09092728793621063
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06821285933256149
INFO:birdwatch.matrix_factorization:epoch 40 0.19850678741931915
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.16542178392410278
INFO:birdwatch.matrix_factorization:epoch 120 0.0908546894788742
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06811489164829254
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.64 secs (0.58 mins)
INFO:birdwatch.scorer:MFGroupScorer_11 Compute scored notes elapsed time: 43.24 secs (0.72 mins)
INFO:birdwatch.matrix_factorization:epoch 140 0.09084469825029373
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0681382268667221
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.note_ratings:Total ratings: 1760882 post-tombstones and 530 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 1437214, including 1437211 post-tombstones and 3 pre-tombstones.
INFO:birdwatch.note_ratings:Total valid ratings: 85848
INFO:birdwatch.scorer:MFGroupScorer_11 Compute valid ratings elapsed time: 2.87 secs (0.05 mins)
INFO:birdwatch.matrix_factorization:Num epochs: 146
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
INFO:birdwatch.matrix_factorization:epoch 146 0.09084411710500717
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0681285411119461
INFO:birdwatch.matrix_factorization:Global Intercept: 0.13832466304302216
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_11 Helpfulness scores pre-harassment elapsed time: 0.32 secs (0.01 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 8833
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 49542
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 7740
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 7161
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 1118331
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 939057
INFO:birdwatch.scorer:MFGroupScorer_11 Filtering by helpfulness score elapsed time: 1.33 secs (0.02 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 562980
1 33536
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 342541
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 464358, Num Unique Notes Rated: 43936, Num Unique Raters: 6379
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 443734
1 20624
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.04441400815749917
INFO:birdwatch.matrix_factorization:Using pos weight: 21.51541892940264 with BCEWithLogitsLoss
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 6379, Notes: 43936
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 10.568963947560087
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 72.79479542248001
INFO:birdwatch.matrix_factorization:epoch 0 3.245861530303955
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.3462748527526855
INFO:birdwatch.matrix_factorization:epoch 20 0.6247559785842896
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2772906720638275
INFO:birdwatch.matrix_factorization:epoch 40 0.39446744322776794
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.22249078750610352
INFO:birdwatch.matrix_factorization:epoch 60 0.36335206031799316
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2124040275812149
INFO:birdwatch.matrix_factorization:epoch 80 0.358895868062973
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.21112506091594696
INFO:birdwatch.matrix_factorization:epoch 100 0.3582291901111603
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.21104197204113007
INFO:birdwatch.matrix_factorization:Num epochs: 103
INFO:birdwatch.matrix_factorization:epoch 103 0.3582249879837036
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.21109746396541595
INFO:birdwatch.matrix_factorization:Global Intercept: -0.2964789867401123
INFO:birdwatch.scorer:MFGroupScorer_11 Harassment tag consensus elapsed time: 5.59 secs (0.09 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFGroupScorer_11 Helpfulness scores post-harassment elapsed time: 0.40 secs (0.01 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 8833
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 49542
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 7158
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 6579
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 1118331
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 738296
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 6579, Notes: 93093
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 7.93073593073593
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 112.22009423924608
INFO:birdwatch.matrix_factorization:epoch 0 0.38544031977653503
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.31715092062950134
INFO:birdwatch.matrix_factorization:epoch 20 0.10276980698108673
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0691324844956398
INFO:birdwatch.matrix_factorization:epoch 40 0.09985589236021042
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06993856281042099
INFO:birdwatch.matrix_factorization:epoch 60 0.09861211478710175
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06738175451755524
INFO:birdwatch.matrix_factorization:epoch 80 0.09854987263679504
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06729985028505325
INFO:birdwatch.matrix_factorization:Num epochs: 99
INFO:birdwatch.matrix_factorization:epoch 99 0.09853356331586838
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06713473051786423
INFO:birdwatch.matrix_factorization:Global Intercept: 0.16698786616325378
INFO:birdwatch.constants:Final round MF elapsed time: 9.04 secs (0.15 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_11 prescoring, about to call diligence with 738296 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 00055253971F408A7AB80D461A543E010EC67DFAF29C45... -0.708740
1 0007EFAB89EB0BCC18E8994B141F291F33C9CB80B9332E... 0.241762
2 000E374F324AEBE8A92439EEC0C3DDE191F293CEF88509... 0.242744
3 001496B1846E8D6B3857F889E75BE6CCB011824EFE36A0... -0.413925
4 00344750A59D7A18770EA50D916A39A1D84ABA1E40CC59... 0.154371
... ... ...
6574 FFBD7465A1175CF9CC7D37B2DB9689BA6469FD38417350... -0.045595
6575 FFC1E16D320BD9589C96893BD161C6F9FDE5FC3C7C2D8E... -0.524984
6576 FFC83F58410624DF16CD78060076B6070F13ACA978E417... -0.314590
6577 FFE852866BE827C0D92EAC6FC2A68007E79120FD605090... -0.424833
6578 FFFA49720F254411E1F79CA757C403F0A0217240BC4922... 0.458012
[6579 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 6579, vs. num we are initializing: 6579
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 6579
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=16.887066 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.349328 | time=1.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.898270 | time=3.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.802666 | time=5.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.767455 | time=6.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=2.748958 | time=8.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=2.737531 | time=10.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=2.729917 | time=11.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=2.724682 | time=13.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=2.721061 | time=15.3s
INFO:birdwatch.matrix_factorization:epoch 60 0.11744123697280884
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09191382676362991
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=2.718465 | time=17.0s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(-0.1548, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=2.718395 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.602709 | time=1.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.592395 | time=3.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.591535 | time=5.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=100 | loss=1.591504 | time=5.6s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.515296 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.454399 | time=1.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.453595 | time=1.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.453562 | time=2.4s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(0.6380, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 2.7185, 1.5915, 0.4536
INFO:birdwatch.scorer:MFGroupScorer_11 Low Diligence MF elapsed time: 25.85 secs (0.43 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.65 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.12 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.71 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.60 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.98 secs (0.02 mins)
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFCoreScorer: dc8f69b3062c675cad659c91fdea98daf4cf2c5c86a315d63225e20cb9aa5b92
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFCoreScorer: 6f492efd4f4511d61fd17a59c8e01c6947c592b05ce271b1f1bd38d02d012c73
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFCoreScorer: 1399dc2994266dc0c33b0e8cbb6bd1846586e58449dac3e640a99ce2ffc5effa
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 33.78 secs (0.56 mins)
INFO:birdwatch.matrix_factorization:epoch 80 0.10625919699668884
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08128134161233902
INFO:birdwatch.constants:MFGroupScorer_11: Compute tag thresholds for percentiles elapsed time: 1.89 secs (0.03 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.run_scoring:MFGroupScorer_10 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFExpansionPlusScorer: f7176c93f2dfaf9c4d69cf2fa77d27c14f3ba5fce0400d8046b9e53279dc779c
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFExpansionPlusScorer: 6f492efd4f4511d61fd17a59c8e01c6947c592b05ce271b1f1bd38d02d012c73
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFExpansionPlusScorer: 1399dc2994266dc0c33b0e8cbb6bd1846586e58449dac3e640a99ce2ffc5effa
INFO:birdwatch.run_scoring:MFGroupScorer_10 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_10 run_scorer_parallelizable: Loading data elapsed time: 22.38 secs (0.37 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFGroupScorer_10 set to: 4
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
noteId internalNoteFactor1
0 1354933402240229380 -0.112242
1 1357798998405447682 -0.502345
2 1360871260054503427 0.302415
3 1361842531655376899 0.320207
4 1362121547511521284 0.337773
... ... ...
125839 1875370284783693963 -0.055580
125840 1649508090755317761 0.386110
125841 1819976965786669296 0.268356
125842 1645870102506622976 -0.198711
125843 1642576751309062145 -0.045856
[125844 rows x 2 columns],
raterInitState:
raterParticipantId internalRaterFactor1
0 F35972BBD2F99515FD974E9C7AFD899970F2E4A5911513... -0.767417
1 9D41130B60D66BCC6FAA1115676546405A37F3BC90991F... -0.756215
2 EBDCB80B1EC4A9FB51C8A562377D72F9569692DEFFC8BC... -0.775990
3 E23374E04DD1B97ED5E4BE68F56CD25AE5DE53DD2A3541... -0.407247
4 60D2AB8839D3EF47DD1C377DD8246EBA76ECB17DD65F13... -0.536566
... ... ...
153177 D63468CC312C3BDBF75AC159934BFC855910C255706F7A... 0.234293
153178 9807DA2C5AE0CAD796716CE294B7C2B934961C61D93F10... -0.091149
153179 9127AA4782D5685D5D752EFD4C36A5AEFDF381565E5625... 0.008951
153180 10D6AE831984739AF8414859A6F358AFDAABFB17645AE3... -0.173865
153181 EF2BD2B99FF12B9E306EA110DA6D535C380DC6705AB784... 0.000395
[153182 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 599301, vs. num we are initializing: 153182
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 446119
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 153182
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 1227415, vs. num we are initializing: 125844
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFExpansionScorer: 5234742b79cb47b4ee11ced73bf98174f16682c5d38bd9376b73109d8240ac76
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteFactor1s: 1210846
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteFactor1s: 16569
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFExpansionScorer: 6f492efd4f4511d61fd17a59c8e01c6947c592b05ce271b1f1bd38d02d012c73
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFExpansionScorer: 1399dc2994266dc0c33b0e8cbb6bd1846586e58449dac3e640a99ce2ffc5effa
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_10. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.119550 | time=0.8s
INFO:birdwatch.scorer:MFCoreScorer Prepare data for stable initialization elapsed time: 63.43 secs (1.06 mins)
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 153182, Notes: 125844
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 67.92280124598709
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 55.80079252131451
INFO:birdwatch.matrix_factorization:epoch 0 6.598752498626709
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.155682563781738
INFO:birdwatch.matrix_factorization:epoch 20 0.37755173444747925
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.27198973298072815
INFO:birdwatch.matrix_factorization:epoch 100 0.10486427694559097
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08077707141637802
INFO:birdwatch.matrix_factorization:Num epochs: 101
INFO:birdwatch.matrix_factorization:epoch 101 0.10486427694559097
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08077707141637802
INFO:birdwatch.matrix_factorization:Global Intercept: 0.15291544795036316
INFO:birdwatch.scorer:MFGroupScorer_13 First MF/stable init elapsed time: 296.73 secs (4.95 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFGroupScorer_13
INFO:birdwatch.matrix_factorization:epoch 40 0.1255543828010559
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0952415019273758
INFO:birdwatch.matrix_factorization:epoch 60 0.09576630592346191
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07156948745250702
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings after group filter: 1008102
INFO:birdwatch.scorer:MFGroupScorer_10 Filter input elapsed time: 51.23 secs (0.85 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.mf_base_scorer:ratings summary MFGroupScorer_10: 66205f3b8debe8396edcd5e3841d972efb5fc6600cbb9478ee18ec8576e21804
INFO:birdwatch.matrix_factorization:epoch 80 0.09140421450138092
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06861695647239685
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 498855, Num Unique Notes Rated: 44531, Num Unique Raters: 6286
INFO:birdwatch.scorer:MFGroupScorer_10 Prepare ratings elapsed time: 0.34 secs (0.01 mins)
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFGroupScorer_10: 85af8802cea96424b506383f4c5c13bf4ec2b020a2c759c0724746fe62d0c000
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFGroupScorer_10: 6f492efd4f4511d61fd17a59c8e01c6947c592b05ce271b1f1bd38d02d012c73
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFGroupScorer_10: 1399dc2994266dc0c33b0e8cbb6bd1846586e58449dac3e640a99ce2ffc5effa
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 6286, Notes: 44531
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 11.2024207855202
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 79.3596881959911
INFO:birdwatch.matrix_factorization:epoch 0 6.574841022491455
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.087750434875488
INFO:birdwatch.matrix_factorization:epoch 20 0.3223755955696106
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2485727220773697
INFO:birdwatch.matrix_factorization:epoch 40 0.14334002137184143
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10413645207881927
INFO:birdwatch.matrix_factorization:epoch 60 0.10707332193851471
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0736645832657814
INFO:birdwatch.matrix_factorization:epoch 80 0.10193940252065659
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06991449743509293
INFO:birdwatch.matrix_factorization:epoch 100 0.10126650333404541
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06940615922212601
INFO:birdwatch.matrix_factorization:epoch 120 0.10117784142494202
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06933258473873138
INFO:birdwatch.matrix_factorization:epoch 100 0.09092728793621063
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06821285933256149
INFO:birdwatch.matrix_factorization:epoch 140 0.10116661339998245
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06932461261749268
INFO:birdwatch.matrix_factorization:Num epochs: 148
INFO:birdwatch.matrix_factorization:epoch 148 0.10116579383611679
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06932135671377182
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1761155128479004
INFO:birdwatch.scorer:MFGroupScorer_10 First MF/stable init elapsed time: 8.15 secs (0.14 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFGroupScorer_10
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.68 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.83 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:epoch 120 0.0908546894788742
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06811489164829254
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.64 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.64 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.12 secs (0.00 mins)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.77 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.78 secs (0.01 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.67 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.64 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.76 secs (0.01 mins)
INFO:birdwatch.scorer:MFExpansionPlusScorer Prepare data for stable initialization elapsed time: 81.33 secs (1.36 mins)
INFO:birdwatch.matrix_factorization:epoch 140 0.09084469825029373
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0681382268667221
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 146965, Notes: 104186
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 63.31568540878813
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 44.88557139454972
INFO:birdwatch.matrix_factorization:epoch 0 6.599421501159668
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.155450344085693
INFO:birdwatch.matrix_factorization:Num epochs: 146
INFO:birdwatch.matrix_factorization:epoch 146 0.09084411710500717
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0681285411119461
INFO:birdwatch.matrix_factorization:Global Intercept: 0.13832466304302216
INFO:birdwatch.scorer:MFCoreScorer MF on stable-initialization subset elapsed time: 71.82 secs (1.20 mins)
INFO:birdwatch.scorer:MFExpansionScorer Prepare data for stable initialization elapsed time: 77.78 secs (1.30 mins)
INFO:birdwatch.matrix_factorization:epoch 20 0.35630518198013306
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.29604703187942505
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 146966, Notes: 104188
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 63.31675432871348
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 44.886885402065786
INFO:birdwatch.matrix_factorization:epoch 0 6.60595703125
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.162001132965088
INFO:birdwatch.matrix_factorization:epoch 40 0.12139009684324265
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09409978240728378
INFO:birdwatch.matrix_factorization:epoch 20 0.3037235140800476
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.24657271802425385
INFO:birdwatch.matrix_factorization:epoch 60 0.09513632208108902
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07131683826446533
INFO:birdwatch.matrix_factorization:epoch 40 0.11647383868694305
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08917077630758286
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.77 secs (0.58 mins)
INFO:birdwatch.scorer:MFGroupScorer_13 Compute scored notes elapsed time: 78.88 secs (1.31 mins)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 38.46 secs (0.64 mins)
INFO:birdwatch.scorer:MFGroupScorer_10 Compute scored notes elapsed time: 47.93 secs (0.80 mins)
INFO:birdwatch.matrix_factorization:epoch 80 0.09121275693178177
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06829170882701874
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.note_ratings:Total ratings: 1007765 post-tombstones and 337 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 810566, including 810566 post-tombstones and 0 pre-tombstones.
INFO:birdwatch.note_ratings:Total valid ratings: 48987
INFO:birdwatch.scorer:MFGroupScorer_10 Compute valid ratings elapsed time: 1.48 secs (0.02 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_10 Helpfulness scores pre-harassment elapsed time: 0.21 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:epoch 60 0.09450153261423111
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07094471901655197
INFO:birdwatch.helpfulness_scores:Unique Raters: 6286
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 31122
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 5807
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 5143
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 498855
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 423387
INFO:birdwatch.scorer:MFGroupScorer_10 Filtering by helpfulness score elapsed time: 0.62 secs (0.01 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 269073
1 16016
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 138298
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 215406, Num Unique Notes Rated: 19523, Num Unique Raters: 4421
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 206414
1 8992
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.04174442680333881
INFO:birdwatch.matrix_factorization:Using pos weight: 22.95529359430605 with BCEWithLogitsLoss
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 4421, Notes: 19523
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 11.033447728320443
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 48.72336575435422
INFO:birdwatch.matrix_factorization:epoch 0 3.2857961654663086
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.379257321357727
INFO:birdwatch.matrix_factorization:epoch 20 0.6208410263061523
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2738921046257019
INFO:birdwatch.matrix_factorization:epoch 40 0.39983925223350525
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2223479449748993
INFO:birdwatch.matrix_factorization:epoch 60 0.36844533681869507
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.211097851395607
INFO:birdwatch.matrix_factorization:epoch 80 0.36397483944892883
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.21021240949630737
INFO:birdwatch.matrix_factorization:epoch 100 0.36326712369918823
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.21010172367095947
INFO:birdwatch.matrix_factorization:epoch 120 0.3631865382194519
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.21013574302196503
INFO:birdwatch.matrix_factorization:Num epochs: 129
INFO:birdwatch.matrix_factorization:epoch 129 0.3631788194179535
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.21012674272060394
INFO:birdwatch.matrix_factorization:Global Intercept: -0.3147020637989044
INFO:birdwatch.scorer:MFGroupScorer_10 Harassment tag consensus elapsed time: 3.80 secs (0.06 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFGroupScorer_10 Helpfulness scores post-harassment elapsed time: 0.27 secs (0.00 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 6286
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 31122
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 5471
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 4807
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 498855
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 348357
INFO:birdwatch.matrix_factorization:epoch 100 0.09067538380622864
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06799691170454025
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 4807, Notes: 44436
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 7.839522009181745
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 72.46869149157479
INFO:birdwatch.matrix_factorization:epoch 0 0.3736807107925415
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.30196502804756165
INFO:birdwatch.matrix_factorization:epoch 20 0.09801459312438965
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06264984607696533
INFO:birdwatch.matrix_factorization:epoch 80 0.09106601774692535
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06829490512609482
INFO:birdwatch.matrix_factorization:epoch 40 0.09619583934545517
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06445912271738052
INFO:birdwatch.matrix_factorization:epoch 60 0.0948190987110138
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06150089204311371
INFO:birdwatch.matrix_factorization:epoch 80 0.09477508068084717
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.061673518270254135
INFO:birdwatch.matrix_factorization:epoch 100 0.09475497901439667
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06141379475593567
INFO:birdwatch.matrix_factorization:Num epochs: 103
INFO:birdwatch.matrix_factorization:epoch 103 0.09475598484277725
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06156698241829872
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1765308380126953
INFO:birdwatch.constants:Final round MF elapsed time: 4.98 secs (0.08 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_10 prescoring, about to call diligence with 348357 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 000D424F8BBD591A0725D5F6F54F78C50C8DC591637C0E... 0.043849
1 002ADDCBF2E4A2F363B766024F866D803ED65C8AF3759C... -0.576816
2 0033B06B2B9E22875E057C84D99E2634127C4291A081B4... -0.279149
3 003FDF9A655454DDED55D10DDC81830B57A59BEED1847D... 0.451751
4 004FF8092304B71DF706338FA263DCACD3EE439A34C930... -0.640659
... ... ...
4802 FFA25730921C4BBCBDFFFBB55A28CDB67BD00A30F74FEF... 0.825386
4803 FFB14685679DE209BD2EB051060B796657AE6158314F58... -0.554702
4804 FFC6993701C48435AB714C158FFD8420268574F35A55EE... -0.072824
4805 FFE9E0E39C0049AD113CEF0AB5178393F13B15C4E7B31C... -0.081506
4806 FFF104BC8D2B5E53432FF3E605B5D5D76EDECE29AFA0F5... 0.593214
[4807 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 4807, vs. num we are initializing: 4807
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 4807
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=15.998718 | time=0.0s
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.267973 | time=0.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.826852 | time=1.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.734086 | time=2.8s
INFO:birdwatch.matrix_factorization:epoch 120 0.09061166644096375
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06794039160013199
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.699100 | time=3.7s
INFO:birdwatch.matrix_factorization:epoch 100 0.09066429734230042
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06797884404659271
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=2.680363 | time=4.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=2.668867 | time=5.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=2.661324 | time=6.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=2.656229 | time=7.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=2.652678 | time=8.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=2.650150 | time=9.1s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(-0.2922, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=2.650073 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.551369 | time=0.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.542536 | time=1.7s
INFO:birdwatch.matrix_factorization:epoch 140 0.09060333669185638
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06792472302913666
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.541726 | time=2.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=100 | loss=1.541695 | time=2.9s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.537292 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.474567 | time=0.5s
INFO:birdwatch.matrix_factorization:epoch 120 0.09060990810394287
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06794218719005585
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.473745 | time=1.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=070 | loss=0.473718 | time=1.2s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(0.4797, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 2.6502, 1.5417, 0.4737
INFO:birdwatch.scorer:MFGroupScorer_10 Low Diligence MF elapsed time: 13.70 secs (0.23 mins)
INFO:birdwatch.matrix_factorization:Num epochs: 147
INFO:birdwatch.matrix_factorization:epoch 147 0.09060263633728027
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06792367994785309
INFO:birdwatch.matrix_factorization:Global Intercept: 0.13638591766357422
INFO:birdwatch.scorer:MFExpansionPlusScorer MF on stable-initialization subset elapsed time: 60.20 secs (1.00 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.64 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.016365 | time=135.3s
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.75 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.68 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:Num epochs: 140
INFO:birdwatch.matrix_factorization:epoch 140 0.09060298651456833
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06791942566633224
INFO:birdwatch.matrix_factorization:Global Intercept: 0.13668499886989594
INFO:birdwatch.scorer:MFExpansionScorer MF on stable-initialization subset elapsed time: 57.30 secs (0.96 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.66 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.74 secs (0.01 mins)
INFO:birdwatch.note_ratings:Total ratings: 35709567 post-tombstones and 214164 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 29097883, including 29032087 post-tombstones and 65796 pre-tombstones.
INFO:birdwatch.note_ratings:Total valid ratings: 1397716
INFO:birdwatch.scorer:MFGroupScorer_13 Compute valid ratings elapsed time: 50.33 secs (0.84 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_13 Helpfulness scores pre-harassment elapsed time: 1.98 secs (0.03 mins)
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 599301, Notes: 1227415
INFO:birdwatch.matrix_factorization:initializing notes
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py, in _initialize_parameters, at line 180: noteInit = self.noteIdMap.merge(
PandasTypeError: Output mismatch on noteIndex_y: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 83.83111254139799
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 171.69263024757174
INFO:birdwatch.matrix_factorization:epoch 0 0.25071707367897034
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2179812788963318
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 38.70 secs (0.65 mins)
INFO:birdwatch.constants:MFGroupScorer_10: Compute tag thresholds for percentiles elapsed time: 1.03 secs (0.02 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.run_scoring:MFGroupScorer_9 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.helpfulness_scores:Unique Raters: 164261
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 226673
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 121082
INFO:birdwatch.run_scoring:MFGroupScorer_9 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_9 run_scorer_parallelizable: Loading data elapsed time: 23.36 secs (0.39 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFGroupScorer_9 set to: 4
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 114140
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 34911348
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 26402896
INFO:birdwatch.scorer:MFGroupScorer_13 Filtering by helpfulness score elapsed time: 50.34 secs (0.84 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_9. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 14899456
1 1457784
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 9975530
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 15918931, Num Unique Notes Rated: 456513, Num Unique Raters: 109032
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 14513353
1 1405578
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.08829600429827857
INFO:birdwatch.matrix_factorization:Using pos weight: 10.325540809545966 with BCEWithLogitsLoss
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 760595, Notes: 1321123
INFO:birdwatch.matrix_factorization:initializing notes
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py, in _initialize_parameters, at line 180: noteInit = self.noteIdMap.merge(
PandasTypeError: Output mismatch on noteIndex_y: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 90.20410060229062
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 156.68090376613046
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 109032, Notes: 456513
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 34.87070685829319
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 146.00237544940936
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 760575, Notes: 1321120
INFO:birdwatch.matrix_factorization:initializing notes
INFO:birdwatch.matrix_factorization:epoch 0 0.24722672998905182
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.21597912907600403
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py, in _initialize_parameters, at line 180: noteInit = self.noteIdMap.merge(
PandasTypeError: Output mismatch on noteIndex_y: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 90.2026727322272
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 156.68218781842685
INFO:birdwatch.matrix_factorization:epoch 0 3.200676441192627
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.3540019989013672
INFO:birdwatch.matrix_factorization:epoch 0 0.24721327424049377
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.21593815088272095
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings after group filter: 5652192
INFO:birdwatch.scorer:MFGroupScorer_9 Filter input elapsed time: 57.42 secs (0.96 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.mf_base_scorer:ratings summary MFGroupScorer_9: c4fef79686c2ee4fd68ac275c54aeb5d1e32282bc7f3b660b30926aa178dbb0a
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 4951595, Num Unique Notes Rated: 160526, Num Unique Raters: 40560
INFO:birdwatch.scorer:MFGroupScorer_9 Prepare ratings elapsed time: 3.13 secs (0.05 mins)
INFO:birdwatch.matrix_factorization:epoch 20 0.6822740435600281
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.39618825912475586
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.015030 | time=274.9s
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFGroupScorer_9: 98a718ca9f1d69e27f48dece344405735d05694ecf4b4975bf6634d5dda3ca16
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFGroupScorer_9: 6f492efd4f4511d61fd17a59c8e01c6947c592b05ce271b1f1bd38d02d012c73
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFGroupScorer_9: 1399dc2994266dc0c33b0e8cbb6bd1846586e58449dac3e640a99ce2ffc5effa
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 40560, Notes: 160526
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 30.8460623201226
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 122.08074457593689
INFO:birdwatch.matrix_factorization:epoch 0 6.183657646179199
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 5.728916645050049
INFO:birdwatch.matrix_factorization:epoch 20 0.3331329822540283
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2727791965007782
INFO:birdwatch.matrix_factorization:epoch 20 0.1216716542840004
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09572986513376236
INFO:birdwatch.matrix_factorization:epoch 40 0.44605863094329834
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.31202468276023865
INFO:birdwatch.matrix_factorization:epoch 40 0.13334016501903534
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09765860438346863
INFO:birdwatch.matrix_factorization:epoch 60 0.10470187664031982
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07548728585243225
INFO:birdwatch.matrix_factorization:epoch 80 0.10087470710277557
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.072791688144207
INFO:birdwatch.matrix_factorization:epoch 60 0.41267022490501404
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2986799478530884
INFO:birdwatch.matrix_factorization:epoch 100 0.10039913654327393
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07229926437139511
INFO:birdwatch.matrix_factorization:epoch 120 0.1003374308347702
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07221179455518723
INFO:birdwatch.matrix_factorization:epoch 80 0.4079984128475189
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2966216206550598
INFO:birdwatch.matrix_factorization:epoch 140 0.10032914578914642
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07223789393901825
INFO:birdwatch.matrix_factorization:Num epochs: 144
INFO:birdwatch.matrix_factorization:epoch 144 0.10032880306243896
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0722227394580841
INFO:birdwatch.matrix_factorization:Global Intercept: 0.16858090460300446
INFO:birdwatch.scorer:MFGroupScorer_9 First MF/stable init elapsed time: 101.77 secs (1.70 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFGroupScorer_9
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.78 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:epoch 20 0.12331050634384155
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09613346308469772
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.68 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.77 secs (0.01 mins)
INFO:birdwatch.matrix_factorization:epoch 100 0.40733471512794495
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2962554395198822
INFO:birdwatch.matrix_factorization:epoch 20 0.1233014315366745
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09613857418298721
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.62 secs (0.58 mins)
INFO:birdwatch.scorer:MFGroupScorer_9 Compute scored notes elapsed time: 47.17 secs (0.79 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.note_ratings:Total ratings: 5651228 post-tombstones and 964 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 4500014, including 4500009 post-tombstones and 5 pre-tombstones.
INFO:birdwatch.matrix_factorization:epoch 40 0.11222019046545029
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08670960366725922
INFO:birdwatch.note_ratings:Total valid ratings: 366137
INFO:birdwatch.scorer:MFGroupScorer_9 Compute valid ratings elapsed time: 6.25 secs (0.10 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_9 Helpfulness scores pre-harassment elapsed time: 0.60 secs (0.01 mins)
INFO:birdwatch.matrix_factorization:epoch 120 0.407224178314209
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2962098717689514
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=0.014969 | time=433.3s
INFO:birdwatch.helpfulness_scores:Unique Raters: 40560
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 90695
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 34739
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 32473
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 4951595
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 4189292
INFO:birdwatch.scorer:MFGroupScorer_9 Filtering by helpfulness score elapsed time: 6.82 secs (0.11 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 2751553
1 188174
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 1249565
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 2783522, Num Unique Notes Rated: 105290, Num Unique Raters: 31066
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 2618713
1 164809
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.05920880093636767
INFO:birdwatch.matrix_factorization:Using pos weight: 15.88938104108392 with BCEWithLogitsLoss
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 31066, Notes: 105290
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 26.436717637002566
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 89.6002703920685
INFO:birdwatch.matrix_factorization:epoch 0 3.3624095916748047
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.4721662998199463
INFO:birdwatch.matrix_factorization:epoch 20 0.7069790959358215
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.4047195315361023
INFO:birdwatch.matrix_factorization:epoch 40 0.45554566383361816
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2976972162723541
INFO:birdwatch.matrix_factorization:epoch 140 0.40719953179359436
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2962021827697754
INFO:birdwatch.matrix_factorization:Num epochs: 141
INFO:birdwatch.matrix_factorization:epoch 141 0.40719953179359436
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2962021827697754
INFO:birdwatch.matrix_factorization:Global Intercept: -0.20349323749542236
INFO:birdwatch.scorer:MFGroupScorer_13 Harassment tag consensus elapsed time: 260.28 secs (4.34 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
INFO:birdwatch.matrix_factorization:epoch 60 0.41886022686958313
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2849714159965515
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFGroupScorer_13 Helpfulness scores post-harassment elapsed time: 6.19 secs (0.10 mins)
INFO:birdwatch.matrix_factorization:epoch 80 0.4139789342880249
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2824951708316803
INFO:birdwatch.matrix_factorization:epoch 100 0.4132935404777527
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2821630835533142
INFO:birdwatch.matrix_factorization:epoch 120 0.4131905734539032
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2821492552757263
INFO:birdwatch.matrix_factorization:Num epochs: 127
INFO:birdwatch.matrix_factorization:epoch 127 0.41318556666374207
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.28213831782341003
INFO:birdwatch.matrix_factorization:Global Intercept: -0.22360152006149292
INFO:birdwatch.scorer:MFGroupScorer_9 Harassment tag consensus elapsed time: 50.05 secs (0.83 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFGroupScorer_9 Helpfulness scores post-harassment elapsed time: 1.05 secs (0.02 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 40560
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 90695
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 30820
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 28554
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 4951595
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 3195238
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 28554, Notes: 160377
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 19.923293240302538
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 111.90158996988163
INFO:birdwatch.matrix_factorization:epoch 0 0.3980688452720642
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.33062678575515747
INFO:birdwatch.helpfulness_scores:Unique Raters: 164261
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 226673
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 111397
INFO:birdwatch.matrix_factorization:epoch 20 0.10257433354854584
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0703306794166565
INFO:birdwatch.matrix_factorization:epoch 40 0.09863606840372086
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07039089500904083
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 104455
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 34911348
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 19428361
INFO:birdwatch.matrix_factorization:epoch 60 0.09800463169813156
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06947032362222672
INFO:birdwatch.matrix_factorization:epoch 80 0.09782175719738007
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0685548186302185
INFO:birdwatch.matrix_factorization:epoch 40 0.11341414600610733
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08804556727409363
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 104455, Notes: 618457
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 31.414247069723523
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 185.99742472835192
INFO:birdwatch.matrix_factorization:epoch 100 0.09781087934970856
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06855683773756027
INFO:birdwatch.matrix_factorization:Num epochs: 101
INFO:birdwatch.matrix_factorization:epoch 101 0.09781087934970856
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06855683773756027
INFO:birdwatch.matrix_factorization:Global Intercept: 0.171379953622818
INFO:birdwatch.constants:Final round MF elapsed time: 47.95 secs (0.80 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_9 prescoring, about to call diligence with 3195238 final round ratings.
INFO:birdwatch.matrix_factorization:epoch 0 0.4043160080909729
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.34436196088790894
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 00029D1FDD352D79B5073189C3F2BDF6377581F50D66C1... -0.628695
1 000415A1E3D1DA95BD626E1D938E4A9AFFB446D1A7D532... 0.673919
2 00041B33023A7D5BCE252803A32E50E9AFCC1584F63ED4... -0.252844
3 0005FD5ECF92B548D17E663347D5E696806076F75457A1... -0.361711
4 000929DF3AFDB652A896FC0BA7FF91D9FBF4F3214D8392... -0.504606
... ... ...
28549 FFF69B7E7ACFBB1E413F8B85384A9EB245A8D8B85F76C9... 0.016865
28550 FFF771FF9CA763466ADA4DA853867E7371DEE6D71C50CB... -0.342952
28551 FFFDAB98EE31EC0CC51169937F859D5B676870C6470C19... 0.480560
28552 FFFEB3E291D915645E08FD13A9BFE66B5912FE45306D25... -0.323640
28553 FFFF8C877BDC3CEFEFD0D4C5F0E8B4BE537F5023A1F31F... -0.518907
[28554 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 28554, vs. num we are initializing: 28554
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 28554
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=17.627953 | time=0.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.549652 | time=8.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.134783 | time=16.2s
INFO:birdwatch.matrix_factorization:epoch 60 0.11096317321062088
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08592578023672104
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=3.074007 | time=26.5s
INFO:birdwatch.matrix_factorization:epoch 40 0.11341163516044617
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08804169297218323
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=3.058036 | time=34.5s
INFO:birdwatch.matrix_factorization:epoch 20 0.10835500061511993
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07922337204217911
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=0.014966 | time=581.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=3.051465 | time=42.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=3.047912 | time=50.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=3.045682 | time=59.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=3.044106 | time=67.8s
INFO:birdwatch.matrix_factorization:epoch 40 0.10419486463069916
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07894574105739594
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=3.043009 | time=78.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=3.042234 | time=86.0s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(0.7144, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=3.042212 | time=0.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=130 | loss=0.014966 | time=634.5s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(0.4173, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.172663 | time=1.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.865350 | time=7.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.854708 | time=15.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.853917 | time=22.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=100 | loss=1.853892 | time=25.2s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.408889 | time=0.0s
INFO:birdwatch.matrix_factorization:epoch 60 0.10389487445354462
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0786510705947876
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.337088 | time=4.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.336210 | time=8.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.336173 | time=10.7s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(1.8723, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 3.0422, 1.8539, 0.3362
INFO:birdwatch.scorer:MFGroupScorer_9 Low Diligence MF elapsed time: 125.71 secs (2.10 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.77 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.70 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.68 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.80 secs (0.01 mins)
INFO:birdwatch.matrix_factorization:epoch 60 0.11200868338346481
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08672810345888138
INFO:birdwatch.matrix_factorization:epoch 80 0.103670135140419
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0776614174246788
INFO:birdwatch.matrix_factorization:epoch 80 0.11079816520214081
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0856325626373291
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.64 secs (0.58 mins)
INFO:birdwatch.constants:MFGroupScorer_9: Compute tag thresholds for percentiles elapsed time: 7.77 secs (0.13 mins)
INFO:birdwatch.matrix_factorization:epoch 60 0.1120082437992096
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08672945946455002
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.run_scoring:MFGroupScorer_8 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.matrix_factorization:epoch 100 0.10364771634340286
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07776617258787155
INFO:birdwatch.matrix_factorization:Num epochs: 101
INFO:birdwatch.matrix_factorization:epoch 101 0.10364771634340286
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07776617258787155
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1562773585319519
INFO:birdwatch.constants:Final round MF elapsed time: 260.32 secs (4.34 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_13 prescoring, about to call diligence with 19428361 final round ratings.
INFO:birdwatch.run_scoring:MFGroupScorer_8 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_8 run_scorer_parallelizable: Loading data elapsed time: 25.51 secs (0.43 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFGroupScorer_8 set to: 4
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 000045A5FA0CF004F68CBF2913506C37D540CF48522D33... 0.634952
1 00022C96980039352E2D04B5E533090FA8BA333F87C5EB... -0.187200
2 0002CA11E7127598E26C281F887129ADA2623C82BBCE8F... -0.431222
3 00043CBC4A8DCE4003E776DCD459F07595B529D190FE6A... -0.583918
4 0006A0E14304DF01B1004C185280BD0429F985BC9BA3BE... -0.030831
... ... ...
104450 FFFE3F2AD0851826664EA471BEA111C1EF31AD64EC79A8... -0.468143
104451 FFFE47B0979CC079B88D01EEBB42203E78DD1CC8115671... 0.051052
104452 FFFE83C62E7D3E361E85273D9A8BC1D7D206AF97FAA90E... -0.065814
104453 FFFEB27D6E27351D14EB43777F265F694744ABB4B3B7AD... -0.660024
104454 FFFF7E0B3ADB6FC5FB42B0F01FFD24495410C1AE4AC986... -0.025618
[104455 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 104455, vs. num we are initializing: 104455
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 104455
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=18.207840 | time=0.4s
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_8. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.092598 | time=157.5s
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.845192 | time=40.4s
INFO:birdwatch.scorer: Ratings after group filter: 769482
INFO:birdwatch.scorer:MFGroupScorer_8 Filter input elapsed time: 49.24 secs (0.82 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.mf_base_scorer:ratings summary MFGroupScorer_8: 640be1b461914c417cb9bfe043a6b482dd9657f1d05ec5f743561e26bb4b3cd5
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 282615, Num Unique Notes Rated: 33822, Num Unique Raters: 3359
INFO:birdwatch.scorer:MFGroupScorer_8 Prepare ratings elapsed time: 0.22 secs (0.00 mins)
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFGroupScorer_8: 21aff49145ffc6c6823623d32dc867cb7d92e23b2daca12a5e21b950438ea579
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFGroupScorer_8: 6f492efd4f4511d61fd17a59c8e01c6947c592b05ce271b1f1bd38d02d012c73
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFGroupScorer_8: 1399dc2994266dc0c33b0e8cbb6bd1846586e58449dac3e640a99ce2ffc5effa
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 3359, Notes: 33822
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 8.35595174738336
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 84.13664781184876
INFO:birdwatch.matrix_factorization:epoch 0 6.674127578735352
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.181101322174072
INFO:birdwatch.matrix_factorization:epoch 20 0.34746503829956055
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2549097239971161
INFO:birdwatch.matrix_factorization:epoch 40 0.15791937708854675
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11638370901346207
INFO:birdwatch.matrix_factorization:epoch 60 0.10570421814918518
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0701366737484932
INFO:birdwatch.matrix_factorization:epoch 80 0.09876681864261627
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0659034475684166
INFO:birdwatch.matrix_factorization:epoch 100 0.09791554510593414
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06515109539031982
INFO:birdwatch.matrix_factorization:epoch 120 0.09780553728342056
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0650898814201355
INFO:birdwatch.matrix_factorization:epoch 140 0.09779118001461029
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06507830321788788
INFO:birdwatch.matrix_factorization:Num epochs: 149
INFO:birdwatch.matrix_factorization:epoch 149 0.09779003262519836
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06507452577352524
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1738341599702835
INFO:birdwatch.scorer:MFGroupScorer_8 First MF/stable init elapsed time: 5.48 secs (0.09 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFGroupScorer_8
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.68 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.18 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.86 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.03 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.72 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.66 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.12 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.81 secs (0.01 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.427992 | time=80.3s
INFO:birdwatch.matrix_factorization:epoch 100 0.1107766330242157
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08563681691884995
INFO:birdwatch.matrix_factorization:epoch 80 0.11184670031070709
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08652419596910477
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 35.05 secs (0.58 mins)
INFO:birdwatch.scorer:MFGroupScorer_8 Compute scored notes elapsed time: 43.22 secs (0.72 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.note_ratings:Total ratings: 769257 post-tombstones and 225 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 615393, including 615393 post-tombstones and 0 pre-tombstones.
INFO:birdwatch.note_ratings:Total valid ratings: 23143
INFO:birdwatch.scorer:MFGroupScorer_8 Compute valid ratings elapsed time: 1.23 secs (0.02 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_8 Helpfulness scores pre-harassment elapsed time: 0.16 secs (0.00 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 3359
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 22924
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 3088
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 2814
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 282615
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 257622
INFO:birdwatch.scorer:MFGroupScorer_8 Filtering by helpfulness score elapsed time: 0.33 secs (0.01 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 156339
1 10974
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 90309
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 110666, Num Unique Notes Rated: 14291, Num Unique Raters: 2197
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 105252
1 5414
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.04892198145771962
INFO:birdwatch.matrix_factorization:Using pos weight: 19.440709272257113 with BCEWithLogitsLoss
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 2197, Notes: 14291
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 7.743754810720033
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 50.37141556668184
INFO:birdwatch.matrix_factorization:epoch 0 3.176023006439209
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.2762701511383057
INFO:birdwatch.matrix_factorization:epoch 20 0.6277109384536743
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2770954966545105
INFO:birdwatch.matrix_factorization:epoch 40 0.4019104242324829
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2206452488899231
INFO:birdwatch.matrix_factorization:epoch 60 0.3705410361289978
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.21070684492588043
INFO:birdwatch.matrix_factorization:epoch 80 0.3660554587841034
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.20878325402736664
INFO:birdwatch.matrix_factorization:epoch 100 0.3654824495315552
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.20870225131511688
INFO:birdwatch.matrix_factorization:epoch 120 0.36539945006370544
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.20868779718875885
INFO:birdwatch.matrix_factorization:Num epochs: 131
INFO:birdwatch.matrix_factorization:epoch 131 0.3653915822505951
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.20870687067508698
INFO:birdwatch.matrix_factorization:Global Intercept: -0.33355405926704407
INFO:birdwatch.scorer:MFGroupScorer_8 Harassment tag consensus elapsed time: 2.71 secs (0.05 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFGroupScorer_8 Helpfulness scores post-harassment elapsed time: 0.23 secs (0.00 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 3359
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 22924
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 2951
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 2677
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 282615
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 226464
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 2677, Notes: 33816
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 6.69694819020582
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 84.59618976466193
INFO:birdwatch.matrix_factorization:epoch 0 0.3799591064453125
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.30798590183258057
INFO:birdwatch.matrix_factorization:epoch 20 0.0965469628572464
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06042271852493286
INFO:birdwatch.matrix_factorization:epoch 40 0.0937800258398056
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06146633252501488
INFO:birdwatch.matrix_factorization:epoch 60 0.09261040389537811
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05911112204194069
INFO:birdwatch.matrix_factorization:epoch 80 0.0925624668598175
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05906740576028824
INFO:birdwatch.matrix_factorization:epoch 100 0.09254294633865356
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05889003351330757
INFO:birdwatch.matrix_factorization:Num epochs: 103
INFO:birdwatch.matrix_factorization:epoch 103 0.09254394471645355
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05901329964399338
INFO:birdwatch.matrix_factorization:Global Intercept: 0.17319533228874207
INFO:birdwatch.constants:Final round MF elapsed time: 3.27 secs (0.05 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_8 prescoring, about to call diligence with 226464 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 000A0CE0A7410288C107822B15D2B35C5E95715EA946E7... -0.768037
1 0026E9A04A48A9CF87EA5FA9499883B8868F322F089686... 0.371154
2 002E8C0F3F6321C14A72393D1A7CB72049853C81110CAA... -0.482728
3 004DF35A540C1F2CFC12C89E8F0CA622480A4F0A52123C... 0.345110
4 00506BFAD47756108668671B68A5FCCA78046636D92B76... -0.499084
... ... ...
2672 FED95DED03904E345304807B78EB74EC32438A0C50F717... 0.296113
2673 FF97899D2A4EEDBDCD42BA1004D5D696AD069094217867... -0.366838
2674 FF98EA5358D2281496E24195141FA88EB6337C53188146... -0.533170
2675 FFA64E61F9B012016BB7ACCFE2FF2E42D57BB570E94452... 0.774155
2676 FFAA122DB59243500CA1C39E0536AAA151881CBD989683... 0.514111
[2677 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 2677, vs. num we are initializing: 2677
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 2677
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=15.891335 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.225421 | time=0.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.777663 | time=1.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.672046 | time=2.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.629744 | time=3.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=2.606175 | time=4.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=2.591590 | time=4.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=2.581974 | time=5.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=2.575238 | time=6.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=2.570729 | time=6.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=2.567490 | time=7.6s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(-0.4778, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=2.567406 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.447663 | time=0.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.438728 | time=1.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.437749 | time=2.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.437749 | time=2.1s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.550993 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.492086 | time=0.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.491305 | time=0.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.491274 | time=1.0s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(0.1921, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 2.5675, 1.4377, 0.4913
INFO:birdwatch.scorer:MFGroupScorer_8 Low Diligence MF elapsed time: 11.06 secs (0.18 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=3.368680 | time=122.7s
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.80 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.71 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.66 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.78 secs (0.01 mins)
INFO:birdwatch.matrix_factorization:epoch 80 0.11184630542993546
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08652402460575104
INFO:birdwatch.matrix_factorization:Num epochs: 109
INFO:birdwatch.matrix_factorization:epoch 109 0.11077479273080826
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0856049582362175
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1622111052274704
INFO:birdwatch.scorer:MFCoreScorer First full MF (initializated with stable-initialization) elapsed time: 820.56 secs (13.68 mins)
INFO:birdwatch.scorer:MFCoreScorer First MF/stable init elapsed time: 958.83 secs (15.98 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFCoreScorer
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=3.353914 | time=159.5s
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 35.61 secs (0.59 mins)
INFO:birdwatch.constants:MFGroupScorer_8: Compute tag thresholds for percentiles elapsed time: 0.67 secs (0.01 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.run_scoring:MFGroupScorer_7 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.090662 | time=309.4s
INFO:birdwatch.run_scoring:MFGroupScorer_7 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_7 run_scorer_parallelizable: Loading data elapsed time: 25.08 secs (0.42 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFGroupScorer_7 set to: 4
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_7. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=3.348665 | time=195.9s
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=3.346341 | time=231.3s
INFO:birdwatch.matrix_factorization:epoch 100 0.11182431876659393
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08652293682098389
INFO:birdwatch.scorer: Ratings after group filter: 1789121
INFO:birdwatch.scorer:MFGroupScorer_7 Filter input elapsed time: 48.74 secs (0.81 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.mf_base_scorer:ratings summary MFGroupScorer_7: 3be852fd803cd63aa546567b930534827aa7706cea3a41b924d294888b8f9eaa
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 1217225, Num Unique Notes Rated: 81330, Num Unique Raters: 16657
INFO:birdwatch.scorer:MFGroupScorer_7 Prepare ratings elapsed time: 0.73 secs (0.01 mins)
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFGroupScorer_7: 30bc51aebf6295e69d41c0c9131e662f75164de20643ff1fe957909bad119df7
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFGroupScorer_7: 6f492efd4f4511d61fd17a59c8e01c6947c592b05ce271b1f1bd38d02d012c73
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFGroupScorer_7: 1399dc2994266dc0c33b0e8cbb6bd1846586e58449dac3e640a99ce2ffc5effa
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 16657, Notes: 81330
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 14.966494528464281
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 73.07588401272739
INFO:birdwatch.matrix_factorization:epoch 0 6.313928604125977
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 5.839940071105957
INFO:birdwatch.matrix_factorization:epoch 20 0.3464145064353943
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.25356990098953247
INFO:birdwatch.matrix_factorization:epoch 40 0.15121066570281982
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11476104706525803
INFO:birdwatch.matrix_factorization:epoch 60 0.12070568650960922
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08980465680360794
INFO:birdwatch.matrix_factorization:epoch 80 0.1162211075425148
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08611352741718292
INFO:birdwatch.matrix_factorization:epoch 100 0.1156323105096817
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08556249737739563
INFO:birdwatch.matrix_factorization:epoch 120 0.11555551737546921
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08548048883676529
INFO:birdwatch.matrix_factorization:epoch 140 0.11554571986198425
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08547631651163101
INFO:birdwatch.matrix_factorization:Num epochs: 146
INFO:birdwatch.matrix_factorization:epoch 146 0.11554515361785889
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08547690510749817
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1797574758529663
INFO:birdwatch.scorer:MFGroupScorer_7 First MF/stable init elapsed time: 21.25 secs (0.35 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFGroupScorer_7
INFO:birdwatch.matrix_factorization:epoch 100 0.11182397603988647
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08652282506227493
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=3.345118 | time=266.9s
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.70 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.12 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.79 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.70 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.67 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.80 secs (0.01 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.matrix_factorization:Num epochs: 109
INFO:birdwatch.matrix_factorization:epoch 109 0.11182256788015366
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08653662353754044
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:Global Intercept: 0.16366994380950928
INFO:birdwatch.scorer:MFExpansionPlusScorer First full MF (initializated with stable-initialization) elapsed time: 918.10 secs (15.30 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.13 secs (0.00 mins)
INFO:birdwatch.scorer:MFExpansionPlusScorer First MF/stable init elapsed time: 1062.86 secs (17.71 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.84 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.03 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.79 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.67 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.77 secs (0.01 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFExpansionPlusScorer
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=3.344395 | time=302.5s
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.67 secs (0.58 mins)
INFO:birdwatch.scorer:MFGroupScorer_7 Compute scored notes elapsed time: 44.10 secs (0.73 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.note_ratings:Total ratings: 1788761 post-tombstones and 360 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 1352787, including 1352784 post-tombstones and 3 pre-tombstones.
INFO:birdwatch.note_ratings:Total valid ratings: 140824
INFO:birdwatch.scorer:MFGroupScorer_7 Compute valid ratings elapsed time: 2.28 secs (0.04 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_7 Helpfulness scores pre-harassment elapsed time: 0.32 secs (0.01 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 16657
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 57414
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 15748
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 13465
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 1217225
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 1033491
INFO:birdwatch.scorer:MFGroupScorer_7 Filtering by helpfulness score elapsed time: 1.53 secs (0.03 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 669357
1 54086
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 310048
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 615954, Num Unique Notes Rated: 45054, Num Unique Raters: 11959
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 578763
1 37191
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.06037950885942781
INFO:birdwatch.matrix_factorization:Using pos weight: 15.561910139549893 with BCEWithLogitsLoss
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 11959, Notes: 45054
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 13.671460913570382
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 51.5054770465758
INFO:birdwatch.matrix_factorization:epoch 0 3.4685802459716797
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.5441439151763916
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=0.090563 | time=437.6s
INFO:birdwatch.matrix_factorization:epoch 20 0.6863232851028442
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.379958838224411
INFO:birdwatch.matrix_factorization:epoch 40 0.49561065435409546
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.31935709714889526
INFO:birdwatch.matrix_factorization:epoch 60 0.46877503395080566
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3088076114654541
INFO:birdwatch.matrix_factorization:epoch 80 0.4651464521884918
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3074062168598175
INFO:birdwatch.matrix_factorization:epoch 100 0.4646463990211487
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3072471022605896
INFO:birdwatch.matrix_factorization:epoch 120 0.4645857810974121
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.30719080567359924
INFO:birdwatch.matrix_factorization:Num epochs: 121
INFO:birdwatch.matrix_factorization:epoch 121 0.4645857810974121
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.30719080567359924
INFO:birdwatch.matrix_factorization:Global Intercept: -0.26841995120048523
INFO:birdwatch.scorer:MFGroupScorer_7 Harassment tag consensus elapsed time: 9.06 secs (0.15 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFGroupScorer_7 Helpfulness scores post-harassment elapsed time: 0.47 secs (0.01 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 16657
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 57414
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 14801
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 12518
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 1217225
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 883910
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 12518, Notes: 81273
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 10.875813615837979
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 70.6111199872184
INFO:birdwatch.matrix_factorization:epoch 0 0.37229666113853455
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.302815318107605
INFO:birdwatch.matrix_factorization:epoch 20 0.1123301312327385
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08000205457210541
INFO:birdwatch.matrix_factorization:epoch 40 0.11032749712467194
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08068172633647919
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.65 secs (0.58 mins)
INFO:birdwatch.scorer:MFCoreScorer Compute scored notes elapsed time: 186.37 secs (3.11 mins)
INFO:birdwatch.matrix_factorization:epoch 60 0.10872460156679153
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07705345749855042
INFO:birdwatch.matrix_factorization:epoch 80 0.10863447189331055
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07750576734542847
INFO:birdwatch.matrix_factorization:epoch 100 0.10859868675470352
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07724955677986145
INFO:birdwatch.matrix_factorization:Num epochs: 102
INFO:birdwatch.matrix_factorization:epoch 102 0.10860097408294678
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07731068134307861
INFO:birdwatch.matrix_factorization:Global Intercept: 0.18187516927719116
INFO:birdwatch.constants:Final round MF elapsed time: 11.54 secs (0.19 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_7 prescoring, about to call diligence with 883910 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 0001C21FD89AC65310D4D74174C0986CDF457DA24DADAB... 0.026208
1 0003E67BB62E658363186A00B13637CF1A58748C4E4ECE... 0.233759
2 0009FC5E666A87A24C6E0A4F985A0F8128DE237BBB6D7B... 0.334185
3 000F1687C56AB92D846F2B9BFA71AE16D8A88426754E3B... 0.677492
4 001A43AFF5E78A3B5614DE48850B68332B26557D0B6904... 0.075942
... ... ...
12513 FFE9CF3FC6CEBF09A2748F1A977245A86BE16A74850C3F... -0.081976
12514 FFEAF4A561DFA90006C71904FB176E3BA20BF932ED1AE6... -0.140429
12515 FFED9EACB703DDAE2E9BBF2B5A7FC35065AB055878F50D... 0.377575
12516 FFEF7AD019F0E1EE28157E1298D5469164E8D7AF2CA91D... -0.251927
12517 FFFBC05DB8408BB532985642C4DE00EC619B062CB60E2E... 0.356822
[12518 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 12518, vs. num we are initializing: 12518
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 12518
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=16.615967 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.510729 | time=2.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=3.343950 | time=337.8s
INFO:birdwatch.matrix_factorization:Num epochs: 112
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.098109 | time=4.1s
INFO:birdwatch.matrix_factorization:epoch 112 0.11182186007499695
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08651027083396912
INFO:birdwatch.matrix_factorization:Global Intercept: 0.16398383677005768
INFO:birdwatch.scorer:MFExpansionScorer First full MF (initializated with stable-initialization) elapsed time: 960.81 secs (16.01 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=3.018143 | time=6.2s
INFO:birdwatch.scorer:MFExpansionScorer First MF/stable init elapsed time: 1100.25 secs (18.34 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.990027 | time=8.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=2.975597 | time=10.4s
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFExpansionScorer
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=2.966304 | time=12.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=2.960111 | time=14.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=2.955841 | time=16.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=2.952745 | time=18.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=2.950481 | time=20.9s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(0.2645, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=2.950412 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.871368 | time=2.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.860657 | time=4.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.859680 | time=6.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=105 | loss=1.859605 | time=7.1s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.548758 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.469256 | time=1.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.468250 | time=2.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.468209 | time=3.1s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(1.2567, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 2.9505, 1.8596, 0.4682
INFO:birdwatch.scorer:MFGroupScorer_7 Low Diligence MF elapsed time: 32.23 secs (0.54 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=3.343662 | time=371.7s
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.66 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(1.0388, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=3.343654 | time=0.3s
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.79 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.68 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.65 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.78 secs (0.01 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.100843 | time=33.1s
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.10 secs (0.57 mins)
INFO:birdwatch.constants:MFGroupScorer_7: Compute tag thresholds for percentiles elapsed time: 2.13 secs (0.04 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.run_scoring:MFGroupScorer_6 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.run_scoring:MFGroupScorer_6 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_6 run_scorer_parallelizable: Loading data elapsed time: 23.50 secs (0.39 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFGroupScorer_6 set to: 4
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.090623 | time=66.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=0.090551 | time=564.9s
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_6. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.note_ratings:Total ratings: 104136031 post-tombstones and 232613 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 82236749, including 82170818 post-tombstones and 65931 pre-tombstones.
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.64 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.15 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.82 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.03 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.81 secs (0.01 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.089773 | time=98.7s
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.reputation_matrix_factorization:epoch=100 | loss=2.089745 | time=109.4s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.339131 | time=0.3s
INFO:birdwatch.scorer: Ratings after group filter: 5575831
INFO:birdwatch.scorer:MFGroupScorer_6 Filter input elapsed time: 50.17 secs (0.84 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.mf_base_scorer:ratings summary MFGroupScorer_6: cd5f217b9de24f80a9b1b861baef67f7f2b94eff240e84889055d9e67c6cb79c
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 4770628, Num Unique Notes Rated: 213405, Num Unique Raters: 31721
INFO:birdwatch.scorer:MFGroupScorer_6 Prepare ratings elapsed time: 2.57 secs (0.04 mins)
INFO:birdwatch.note_ratings:Total valid ratings: 5640836
INFO:birdwatch.scorer:MFCoreScorer Compute valid ratings elapsed time: 170.12 secs (2.84 mins)
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFGroupScorer_6: 1d3ec34217c42287ae2ac660322b05bfa1acf80e51a5312066151d0ea1bb1b46
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFGroupScorer_6: 6f492efd4f4511d61fd17a59c8e01c6947c592b05ce271b1f1bd38d02d012c73
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFGroupScorer_6: 1399dc2994266dc0c33b0e8cbb6bd1846586e58449dac3e640a99ce2ffc5effa
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.83 secs (0.58 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.260010 | time=21.7s
INFO:birdwatch.scorer:MFExpansionPlusScorer Compute scored notes elapsed time: 208.42 secs (3.47 mins)
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 31721, Notes: 213405
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 22.354808931374617
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 150.39336717001356
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.matrix_factorization:epoch 0 6.270805358886719
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 5.814360618591309
INFO:birdwatch.scorer:MFCoreScorer Helpfulness scores pre-harassment elapsed time: 6.17 secs (0.10 mins)
INFO:birdwatch.matrix_factorization:epoch 20 0.3656359612941742
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2881253957748413
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.259075 | time=43.7s
INFO:birdwatch.matrix_factorization:epoch 40 0.14423643052577972
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10766056180000305
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.259036 | time=54.4s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(2.3710, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 3.3437, 2.0897, 0.2590
INFO:birdwatch.scorer:MFGroupScorer_13 Low Diligence MF elapsed time: 561.25 secs (9.35 mins)
INFO:birdwatch.matrix_factorization:epoch 60 0.11036738008260727
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07999762147665024
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.matrix_factorization:epoch 80 0.10544703900814056
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07647175341844559
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.76 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.14 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.91 secs (0.02 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.03 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.80 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.78 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.84 secs (0.01 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.matrix_factorization:epoch 100 0.10483088344335556
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07613364607095718
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=0.090548 | time=691.2s
INFO:birdwatch.matrix_factorization:epoch 120 0.10476754605770111
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07607046514749527
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.64 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.74 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.59 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.73 secs (0.01 mins)
INFO:birdwatch.matrix_factorization:epoch 140 0.10475783795118332
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07606589049100876
INFO:birdwatch.matrix_factorization:Num epochs: 147
INFO:birdwatch.matrix_factorization:epoch 147 0.10475708544254303
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07606537640094757
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1682448834180832
INFO:birdwatch.scorer:MFGroupScorer_6 First MF/stable init elapsed time: 80.14 secs (1.34 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFGroupScorer_6
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 37.71 secs (0.63 mins)
INFO:birdwatch.scorer:MFExpansionScorer Compute scored notes elapsed time: 245.19 secs (4.09 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.61 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.76 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.68 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.60 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.74 secs (0.01 mins)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.53 secs (0.58 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 599301
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 582446
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 469203
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.76 secs (0.58 mins)
INFO:birdwatch.scorer:MFGroupScorer_6 Compute scored notes elapsed time: 48.98 secs (0.82 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.note_ratings:Total ratings: 5574635 post-tombstones and 1196 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 4475905, including 4475836 post-tombstones and 69 pre-tombstones.
INFO:birdwatch.note_ratings:Total valid ratings: 343877
INFO:birdwatch.scorer:MFGroupScorer_6 Compute valid ratings elapsed time: 6.27 secs (0.10 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_6 Helpfulness scores pre-harassment elapsed time: 0.64 secs (0.01 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.helpfulness_scores:Unique Raters: 31721
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 96153
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 26201
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 24774
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 4770628
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 3886196
INFO:birdwatch.scorer:MFGroupScorer_6 Filtering by helpfulness score elapsed time: 6.27 secs (0.10 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 2521193
1 140651
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 1224352
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 2433805, Num Unique Notes Rated: 127698, Num Unique Raters: 23472
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 2320223
1 113582
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.04666848823139076
INFO:birdwatch.matrix_factorization:Using pos weight: 20.427735028437606 with BCEWithLogitsLoss
INFO:birdwatch.note_ratings:Total ratings: 120703210 post-tombstones and 241978 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 95191946, including 95124470 post-tombstones and 67476 pre-tombstones.
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 23472, Notes: 127698
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 19.059069053548214
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 103.68971540558964
INFO:birdwatch.matrix_factorization:epoch 0 3.356210231781006
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.4606125354766846
INFO:birdwatch.matrix_factorization:epoch 20 0.6742969751358032
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.34321776032447815
INFO:birdwatch.matrix_factorization:epoch 40 0.4409317076206207
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2760968804359436
INFO:birdwatch.matrix_factorization:epoch 60 0.4060561954975128
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2636943459510803
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 438164
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 102895565
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 79349995
INFO:birdwatch.scorer:MFCoreScorer Filtering by helpfulness score elapsed time: 162.25 secs (2.70 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.matrix_factorization:epoch 80 0.4013458490371704
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.26154324412345886
INFO:birdwatch.matrix_factorization:epoch 100 0.40070536732673645
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2612432539463043
INFO:birdwatch.constants:MFGroupScorer_13: Compute tag thresholds for percentiles elapsed time: 65.29 secs (1.09 mins)
INFO:birdwatch.matrix_factorization:epoch 120 0.4006197452545166
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.26121625304222107
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 49732971
1 3372716
dtype: int64
INFO:birdwatch.matrix_factorization:Num epochs: 126
INFO:birdwatch.matrix_factorization:epoch 126 0.4006158709526062
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.26122498512268066
INFO:birdwatch.matrix_factorization:Global Intercept: -0.24334657192230225
INFO:birdwatch.scorer:MFGroupScorer_6 Harassment tag consensus elapsed time: 37.71 secs (0.63 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.tag_consensus:Number of rows with no tag label 26175143
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFGroupScorer_6 Helpfulness scores post-harassment elapsed time: 1.23 secs (0.02 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 31721
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 96153
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 23491
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 22064
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 4770628
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 3031814
INFO:birdwatch.note_ratings:Total valid ratings: 7181568
INFO:birdwatch.scorer:MFExpansionPlusScorer Compute valid ratings elapsed time: 187.39 secs (3.12 mins)
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 22064, Notes: 212402
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 14.27394280656491
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 137.4099891225526
INFO:birdwatch.matrix_factorization:epoch 0 0.38587597012519836
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3186874985694885
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=0.090548 | time=816.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=0.090548 | time=816.7s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.007627 | time=0.9s
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFExpansionPlusScorer Helpfulness scores pre-harassment elapsed time: 7.35 secs (0.12 mins)
INFO:birdwatch.matrix_factorization:epoch 20 0.1026848629117012
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07053884118795395
INFO:birdwatch.matrix_factorization:epoch 40 0.0991692915558815
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0704842284321785
INFO:birdwatch.matrix_factorization:epoch 60 0.09788583219051361
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06807220727205276
INFO:birdwatch.matrix_factorization:epoch 80 0.09779573976993561
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0678388699889183
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 52447380, Num Unique Notes Rated: 1020212, Num Unique Raters: 421840
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 49134759
1 3312621
dtype: int64
INFO:birdwatch.matrix_factorization:epoch 100 0.09777955710887909
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0676669180393219
INFO:birdwatch.matrix_factorization:Num epochs: 103
INFO:birdwatch.matrix_factorization:epoch 103 0.09777899086475372
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06779856234788895
INFO:birdwatch.matrix_factorization:Global Intercept: 0.17027948796749115
INFO:birdwatch.constants:Final round MF elapsed time: 42.47 secs (0.71 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_6 prescoring, about to call diligence with 3031814 final round ratings.
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.06316084807286847
INFO:birdwatch.matrix_factorization:Using pos weight: 14.832592983018582 with BCEWithLogitsLoss
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 0002188E5ED3028646C97CBE9ADCD12CB5B8BFAF8819BD... -0.173736
1 0002EEF8B312A7DCBF698391778CD9D0F7ADA652FBFB9E... -0.284836
2 0005983E6E18862483AB372C5B61FEBC1F8A573E7701F9... -0.507332
3 000677AE7F63255B464AD153D315B2E25DB8BF771A379D... 0.479094
4 000760B0C9739248AF3CA6B833A219CC24A4B85C5B4D0D... 0.208708
... ... ...
22059 FFFAA9B8DDDDF9C3CD12F97B13C1658E63F495884418D6... 0.013979
22060 FFFBB8B4BE340D5AAC99E9168F2711EBAB3CE5C9A2567B... -0.123964
22061 FFFC8248F057883916F06F78A0DB7878BFB2C6162434E2... -0.551289
22062 FFFD65E501817C7A5590FADEE2646D40BF1BA5582F6801... -0.332513
22063 FFFFAB2FDBC1968F4CFE97A86D88963D702B636365B6CD... -0.005224
[22064 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 22064, vs. num we are initializing: 22064
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 22064
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=15.466070 | time=0.0s
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.note_ratings:Total ratings: 120701007 post-tombstones and 241977 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 95190276, including 95122800 post-tombstones and 67476 pre-tombstones.
INFO:birdwatch.run_scoring:MFGroupScorer_5 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.406949 | time=7.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.023018 | time=15.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.962512 | time=22.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.944169 | time=29.1s
INFO:birdwatch.run_scoring:MFGroupScorer_5 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_5 run_scorer_parallelizable: Loading data elapsed time: 25.15 secs (0.42 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFGroupScorer_5 set to: 4
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_5. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=2.935391 | time=35.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=2.930055 | time=42.8s
INFO:birdwatch.note_ratings:Total valid ratings: 7193682
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=2.926494 | time=49.8s
INFO:birdwatch.scorer:MFExpansionScorer Compute valid ratings elapsed time: 188.52 secs (3.14 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.007072 | time=84.6s
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 421840, Notes: 1020212
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 51.40831513450146
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 124.3300303432581
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=2.924022 | time=56.8s
INFO:birdwatch.matrix_factorization:epoch 0 3.225405693054199
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.4507755041122437
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFExpansionScorer Helpfulness scores pre-harassment elapsed time: 8.65 secs (0.14 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=2.922227 | time=63.9s
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=2.920981 | time=71.1s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(0.2720, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=2.920947 | time=0.0s
INFO:birdwatch.scorer: Ratings after group filter: 565869
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.758078 | time=6.9s
INFO:birdwatch.scorer:MFGroupScorer_5 Filter input elapsed time: 49.08 secs (0.82 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.mf_base_scorer:ratings summary MFGroupScorer_5: 9303f55444e67e6fd23626d4b2885862c1fa54b649feb313806c66b929d36b0a
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 242685, Num Unique Notes Rated: 22638, Num Unique Raters: 3902
INFO:birdwatch.scorer:MFGroupScorer_5 Prepare ratings elapsed time: 0.17 secs (0.00 mins)
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFGroupScorer_5: c176786745703fe882d386c5d9f08dceb79f55a961fa16bbd6f82f9e892c3323
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFGroupScorer_5: 6f492efd4f4511d61fd17a59c8e01c6947c592b05ce271b1f1bd38d02d012c73
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFGroupScorer_5: 1399dc2994266dc0c33b0e8cbb6bd1846586e58449dac3e640a99ce2ffc5effa
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 3902, Notes: 22638
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 10.720249138616486
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 62.19502819067145
INFO:birdwatch.matrix_factorization:epoch 0 6.585812568664551
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.091764450073242
INFO:birdwatch.matrix_factorization:epoch 20 0.28472474217414856
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.20711880922317505
INFO:birdwatch.matrix_factorization:epoch 40 0.13348007202148438
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09200548380613327
INFO:birdwatch.matrix_factorization:epoch 60 0.10149544477462769
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.065911203622818
INFO:birdwatch.matrix_factorization:epoch 80 0.09650790691375732
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06248011067509651
INFO:birdwatch.matrix_factorization:epoch 100 0.0958905965089798
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.061985645443201065
INFO:birdwatch.matrix_factorization:epoch 120 0.09580732882022858
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06190083548426628
INFO:birdwatch.matrix_factorization:epoch 140 0.09579630196094513
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.061905086040496826
INFO:birdwatch.matrix_factorization:Num epochs: 148
INFO:birdwatch.matrix_factorization:epoch 148 0.09579534083604813
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.061904676258563995
INFO:birdwatch.matrix_factorization:Global Intercept: 0.18610632419586182
INFO:birdwatch.scorer:MFGroupScorer_5 First MF/stable init elapsed time: 4.12 secs (0.07 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFGroupScorer_5
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.746932 | time=13.8s
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.61 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.80 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.65 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.62 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.746044 | time=20.7s
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.77 secs (0.01 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=100 | loss=1.746017 | time=23.0s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.447986 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.380310 | time=4.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.379469 | time=8.2s
INFO:birdwatch.helpfulness_scores:Unique Raters: 760595
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 722512
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 616331
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.379433 | time=10.2s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(1.3191, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 2.9210, 1.7460, 0.3794
INFO:birdwatch.scorer:MFGroupScorer_6 Low Diligence MF elapsed time: 107.97 secs (1.80 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.66 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.70 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.68 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.56 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.77 secs (0.01 mins)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.39 secs (0.57 mins)
INFO:birdwatch.scorer:MFGroupScorer_5 Compute scored notes elapsed time: 41.87 secs (0.70 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.note_ratings:Total ratings: 565731 post-tombstones and 138 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 449626, including 449626 post-tombstones and 0 pre-tombstones.
INFO:birdwatch.note_ratings:Total valid ratings: 27112
INFO:birdwatch.scorer:MFGroupScorer_5 Compute valid ratings elapsed time: 0.95 secs (0.02 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_5 Helpfulness scores pre-harassment elapsed time: 0.12 secs (0.00 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 3902
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 17268
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 3700
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 3232
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 242685
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 215077
INFO:birdwatch.scorer:MFGroupScorer_5 Filtering by helpfulness score elapsed time: 0.28 secs (0.00 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 142446
1 11797
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 60834
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 119926, Num Unique Notes Rated: 11584, Num Unique Raters: 2761
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 113615
1 6311
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.05262411820622717
INFO:birdwatch.matrix_factorization:Using pos weight: 18.002693709396294 with BCEWithLogitsLoss
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 2761, Notes: 11584
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 10.352727900552486
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 43.43571169865991
INFO:birdwatch.matrix_factorization:epoch 0 3.3174281120300293
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.4138611555099487
INFO:birdwatch.matrix_factorization:epoch 20 0.635836124420166
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.292518675327301
INFO:birdwatch.matrix_factorization:epoch 40 0.42002376914024353
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.238921657204628
INFO:birdwatch.matrix_factorization:epoch 20 0.7049931287765503
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.42920413613319397
INFO:birdwatch.matrix_factorization:epoch 60 0.38807183504104614
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2273017019033432
INFO:birdwatch.matrix_factorization:epoch 80 0.3837983012199402
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2260620892047882
INFO:birdwatch.matrix_factorization:epoch 100 0.3833158612251282
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.22575566172599792
INFO:birdwatch.matrix_factorization:Num epochs: 101
INFO:birdwatch.matrix_factorization:epoch 101 0.3833158612251282
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.22575566172599792
INFO:birdwatch.matrix_factorization:Global Intercept: -0.27825331687927246
INFO:birdwatch.scorer:MFGroupScorer_5 Harassment tag consensus elapsed time: 1.79 secs (0.03 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFGroupScorer_5 Helpfulness scores post-harassment elapsed time: 0.14 secs (0.00 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 3902
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 17268
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 3510
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 3042
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 242685
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 187316
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 3042, Notes: 22627
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 8.278428426216466
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 61.576594345825114
INFO:birdwatch.matrix_factorization:epoch 0 0.38187411427497864
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3069080412387848
INFO:birdwatch.matrix_factorization:epoch 20 0.09649358689785004
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05959121882915497
INFO:birdwatch.matrix_factorization:epoch 40 0.09225410223007202
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05889792740345001
INFO:birdwatch.matrix_factorization:epoch 60 0.09085475653409958
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05636866018176079
INFO:birdwatch.matrix_factorization:epoch 80 0.09072448313236237
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05619700625538826
INFO:birdwatch.matrix_factorization:epoch 100 0.09070117771625519
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05592891573905945
INFO:birdwatch.matrix_factorization:Num epochs: 103
INFO:birdwatch.matrix_factorization:epoch 103 0.09070120751857758
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05606788769364357
INFO:birdwatch.matrix_factorization:Global Intercept: 0.18550153076648712
INFO:birdwatch.constants:Final round MF elapsed time: 2.47 secs (0.04 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_5 prescoring, about to call diligence with 187316 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.006998 | time=167.8s
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 001670E335A2559879EA4C5497E9469BD163D949F32CFB... 0.706790
1 003DAEE4C05D42B92583AD7BB4E5FC40051E7EDB8A34F4... -0.543804
2 0078B6E44FB3B19530E03D5FF363823AE29AEF431E16A4... -0.303043
3 007931FC488902DD0A8CB7AA24BFAB189E614C73CCAB9E... -0.446241
4 009C72D58070EFB66CCE4A16846DF830BFF7C4D3D6352B... -0.458086
... ... ...
3037 FFAC3C1B41112324A7D9677419DF2C179D47327EFC3458... -0.262326
3038 FFB5DC98D9D19D482617D7D9F61B91DFB74F2B5588EADC... 0.322892
3039 FFBF66FB8FE4AEF510F7CD3F18B24F5FCCD83CFBFB4F0E... -0.670645
3040 FFC5FEB6111C3D7EEE8617D8CDE530946BE44871355D9D... 0.007671
3041 FFD53734E61F61EBA6B7498BD376679CF43F368AAD28C7... -0.584890
[3042 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 3042, vs. num we are initializing: 3042
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 3042
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=16.192408 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.245615 | time=0.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.806309 | time=0.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.715728 | time=1.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.681431 | time=1.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=2.661712 | time=2.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=2.649036 | time=2.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=2.640733 | time=3.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=2.635088 | time=3.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=2.631102 | time=4.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=2.628285 | time=4.8s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(-0.1594, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=2.628208 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.548235 | time=0.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.538268 | time=0.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.537306 | time=1.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=100 | loss=1.537274 | time=1.6s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.552759 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.490480 | time=0.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.489672 | time=0.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.489639 | time=0.7s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(0.6222, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 2.6283, 1.5373, 0.4896
INFO:birdwatch.scorer:MFGroupScorer_5 Low Diligence MF elapsed time: 7.27 secs (0.12 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.59 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.70 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.61 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.60 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.80 secs (0.01 mins)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 35.87 secs (0.60 mins)
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 563491
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 119170712
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 91836703
INFO:birdwatch.scorer:MFExpansionPlusScorer Filtering by helpfulness score elapsed time: 192.15 secs (3.20 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.constants:MFGroupScorer_6: Compute tag thresholds for percentiles elapsed time: 8.04 secs (0.13 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.run_scoring:MFGroupScorer_4 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 58082513
1 3969624
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 29714177
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.69 secs (0.58 mins)
INFO:birdwatch.constants:MFGroupScorer_5: Compute tag thresholds for percentiles elapsed time: 0.56 secs (0.01 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.run_scoring:MFGroupScorer_3 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.reputation_matrix_factorization:epoch=080 | loss=0.006995 | time=223.2s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(0.6820, requires_grad=True)
INFO:birdwatch.helpfulness_model:Helpfulness reputation loss: 0.0150, 0.0905, 0.0070
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/reputation_scorer.py, in _prescore_notes_and_users, at line 135: noteStats = noteStats.merge(noteStatusHistory[[c.noteIdKey]].drop_duplicates(), how="outer")
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.reputation_scorer:Reputation prescoring: returning these columns:
noteStats: Index(['noteId', 'internalNoteIntercept', 'internalNoteFactor1',
'lowDiligenceNoteInterceptRound2'],
dtype='object')
raterStats: Index(['raterParticipantId', 'internalRaterReputation',
'internalRaterIntercept', 'internalRaterFactor1',
'lowDiligenceRaterInterceptRound2'],
dtype='object')
INFO:birdwatch.run_scoring:MFGroupScorer_2 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.helpfulness_scores:Unique Raters: 760575
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 722844
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 616660
INFO:birdwatch.run_scoring:MFGroupScorer_4 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_4 run_scorer_parallelizable: Loading data elapsed time: 27.09 secs (0.45 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFGroupScorer_4 set to: 4
INFO:birdwatch.matrix_factorization:epoch 40 0.48327550292015076
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3420565128326416
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_4. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.run_scoring:MFGroupScorer_3 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_3 run_scorer_parallelizable: Loading data elapsed time: 24.00 secs (0.40 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFGroupScorer_3 set to: 4
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_3. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.run_scoring:MFGroupScorer_2 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_2 run_scorer_parallelizable: Loading data elapsed time: 25.74 secs (0.43 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFGroupScorer_2 set to: 4
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 61343877, Num Unique Notes Rated: 1117500, Num Unique Raters: 540285
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_2. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 57434887
1 3908990
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.06372257821265519
INFO:birdwatch.matrix_factorization:Using pos weight: 14.693024796686615 with BCEWithLogitsLoss
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings after group filter: 1940497
INFO:birdwatch.scorer:MFGroupScorer_4 Filter input elapsed time: 49.06 secs (0.82 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.mf_base_scorer:ratings summary MFGroupScorer_4: c16493959faeadf885156bdc217f054675df34ad11a196bf9dbfbf041e7b0d9d
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 1528388, Num Unique Notes Rated: 61169, Num Unique Raters: 14590
INFO:birdwatch.scorer:MFGroupScorer_4 Prepare ratings elapsed time: 0.84 secs (0.01 mins)
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFGroupScorer_4: 139ddfaad6f909d2aaf8ab1ac13e3e672bcadd2449b28f69aa92f19d394951dd
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFGroupScorer_4: 6f492efd4f4511d61fd17a59c8e01c6947c592b05ce271b1f1bd38d02d012c73
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFGroupScorer_4: 1399dc2994266dc0c33b0e8cbb6bd1846586e58449dac3e640a99ce2ffc5effa
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 563746
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 119168555
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 91883196
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 14590, Notes: 61169
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 24.986316598276904
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 104.75586017820424
INFO:birdwatch.scorer:MFExpansionScorer Filtering by helpfulness score elapsed time: 195.38 secs (3.26 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.matrix_factorization:epoch 0 6.678780555725098
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.203587532043457
INFO:birdwatch.matrix_factorization:epoch 20 0.33320388197898865
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.27523019909858704
INFO:birdwatch.scorer: Ratings after group filter: 6272990
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer:MFGroupScorer_3 Filter input elapsed time: 51.71 secs (0.86 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.matrix_factorization:epoch 40 0.17947255074977875
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.14979363977909088
INFO:birdwatch.scorer: Ratings after group filter: 1508019
INFO:birdwatch.matrix_factorization:epoch 60 0.10804477334022522
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07586950063705444
INFO:birdwatch.scorer:MFGroupScorer_2 Filter input elapsed time: 47.23 secs (0.79 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.mf_base_scorer:ratings summary MFGroupScorer_3: e98c320e953427f3f662eed78e6fa61b568d985b49a5cb8826d5a7415f206fa5
INFO:birdwatch.matrix_factorization:epoch 80 0.09873808920383453
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06912253797054291
INFO:birdwatch.mf_base_scorer:ratings summary MFGroupScorer_2: 2c0f5c6b8075f55d58fcbd5c275aa476998ccb546834d7c8ef1483a1f8591218
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 904592, Num Unique Notes Rated: 69485, Num Unique Raters: 9848
INFO:birdwatch.scorer:MFGroupScorer_2 Prepare ratings elapsed time: 0.55 secs (0.01 mins)
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 58111011
1 3975975
dtype: int64
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFGroupScorer_2: ed1ed36c8b0fa771c0980983fb80f3507a6ae8f6560fa3b825ff693fbafa85e3
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFGroupScorer_2: 6f492efd4f4511d61fd17a59c8e01c6947c592b05ce271b1f1bd38d02d012c73
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFGroupScorer_2: 1399dc2994266dc0c33b0e8cbb6bd1846586e58449dac3e640a99ce2ffc5effa
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 5544045, Num Unique Notes Rated: 171473, Num Unique Raters: 51204
INFO:birdwatch.scorer:MFGroupScorer_3 Prepare ratings elapsed time: 3.13 secs (0.05 mins)
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 9848, Notes: 69485
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:epoch 100 0.09727585315704346
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06815438717603683
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 13.018521983161833
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 91.85540211210397
INFO:birdwatch.matrix_factorization:epoch 0 6.530896186828613
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.049686431884766
INFO:birdwatch.tag_consensus:Number of rows with no tag label 29726079
INFO:birdwatch.matrix_factorization:epoch 20 0.3711766004562378
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2780326306819916
INFO:birdwatch.matrix_factorization:epoch 120 0.09709788113832474
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0680956169962883
INFO:birdwatch.matrix_factorization:epoch 40 0.14695483446121216
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10751470923423767
INFO:birdwatch.matrix_factorization:epoch 60 0.44822174310684204
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3275172710418701
INFO:birdwatch.matrix_factorization:epoch 60 0.11536134779453278
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0840974748134613
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFGroupScorer_3: 10e1e92cb2663396cae543faabfa6082e56b1f2fbc3f84182d932d4c87d16ff2
INFO:birdwatch.matrix_factorization:epoch 140 0.0970749631524086
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06805853545665741
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFGroupScorer_3: 6f492efd4f4511d61fd17a59c8e01c6947c592b05ce271b1f1bd38d02d012c73
INFO:birdwatch.matrix_factorization:epoch 80 0.11034777760505676
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08022522181272507
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFGroupScorer_3: 1399dc2994266dc0c33b0e8cbb6bd1846586e58449dac3e640a99ce2ffc5effa
INFO:birdwatch.matrix_factorization:Num epochs: 153
INFO:birdwatch.matrix_factorization:epoch 153 0.09707260876893997
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06805459409952164
INFO:birdwatch.matrix_factorization:Global Intercept: 0.16788910329341888
INFO:birdwatch.scorer:MFGroupScorer_4 First MF/stable init elapsed time: 26.38 secs (0.44 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFGroupScorer_4
INFO:birdwatch.matrix_factorization:epoch 100 0.10969796776771545
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07964546978473663
INFO:birdwatch.matrix_factorization:epoch 120 0.10959462821483612
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07957520335912704
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 51204, Notes: 171473
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 32.33188315361602
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 108.27367002577924
INFO:birdwatch.matrix_factorization:epoch 0 6.160154342651367
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 5.7076520919799805
INFO:birdwatch.matrix_factorization:epoch 140 0.10956564545631409
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07954714447259903
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.65 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.matrix_factorization:Num epochs: 156
INFO:birdwatch.matrix_factorization:epoch 156 0.10956329107284546
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07954873144626617
INFO:birdwatch.matrix_factorization:Global Intercept: 0.17118540406227112
INFO:birdwatch.scorer:MFGroupScorer_2 First MF/stable init elapsed time: 15.08 secs (0.25 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFGroupScorer_2
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.19 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.83 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.03 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.66 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.61 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.72 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.66 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.75 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.65 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 540285, Notes: 1117500
INFO:birdwatch.matrix_factorization:initializing notes
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.71 secs (0.01 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 54.89384966442953
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 113.53984841333741
INFO:birdwatch.matrix_factorization:epoch 20 0.34891653060913086
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2760895788669586
INFO:birdwatch.matrix_factorization:epoch 0 3.227686882019043
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.470324158668518
INFO:birdwatch.matrix_factorization:epoch 40 0.1404491811990738
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10607077926397324
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 61378965, Num Unique Notes Rated: 1117642, Num Unique Raters: 540525
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 57463556
1 3915409
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.matrix_factorization:epoch 60 0.11468944698572159
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08667495846748352
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.06379073026076605
INFO:birdwatch.matrix_factorization:Using pos weight: 14.676258853161954 with BCEWithLogitsLoss
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 35.77 secs (0.60 mins)
INFO:birdwatch.scorer:MFGroupScorer_4 Compute scored notes elapsed time: 44.85 secs (0.75 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.note_ratings:Total ratings: 1940185 post-tombstones and 312 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 1600817, including 1600817 post-tombstones and 0 pre-tombstones.
INFO:birdwatch.note_ratings:Total valid ratings: 110728
INFO:birdwatch.scorer:MFGroupScorer_4 Compute valid ratings elapsed time: 2.15 secs (0.04 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_4 Helpfulness scores pre-harassment elapsed time: 0.30 secs (0.00 mins)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 33.87 secs (0.56 mins)
INFO:birdwatch.scorer:MFGroupScorer_2 Compute scored notes elapsed time: 42.42 secs (0.71 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 14590
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 39083
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 12156
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 11347
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 1528388
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 1269605
INFO:birdwatch.scorer:MFGroupScorer_4 Filtering by helpfulness score elapsed time: 1.91 secs (0.03 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.note_ratings:Total ratings: 1507617 post-tombstones and 402 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 1192400, including 1192400 post-tombstones and 0 pre-tombstones.
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 775946
1 81413
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 412246
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 791283, Num Unique Notes Rated: 38139, Num Unique Raters: 10667
INFO:birdwatch.note_ratings:Total valid ratings: 82864
INFO:birdwatch.scorer:MFGroupScorer_2 Compute valid ratings elapsed time: 1.56 secs (0.03 mins)
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 720521
1 70762
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.08942691805586624
INFO:birdwatch.matrix_factorization:Using pos weight: 10.18231536700489 with BCEWithLogitsLoss
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_2 Helpfulness scores pre-harassment elapsed time: 0.22 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 10667, Notes: 38139
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 20.747345237158815
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 74.1804631105278
INFO:birdwatch.matrix_factorization:epoch 0 3.4033613204956055
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.5108660459518433
INFO:birdwatch.helpfulness_scores:Unique Raters: 9848
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 42685
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 9127
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 7946
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 904592
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 782180
INFO:birdwatch.scorer:MFGroupScorer_2 Filtering by helpfulness score elapsed time: 1.14 secs (0.02 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 495140
1 25622
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 261418
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 420491, Num Unique Notes Rated: 34040, Num Unique Raters: 7004
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 405316
1 15175
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.03608876289861138
INFO:birdwatch.matrix_factorization:Using pos weight: 26.709456342668865 with BCEWithLogitsLoss
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 7004, Notes: 34040
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 12.352849588719154
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 60.03583666476299
INFO:birdwatch.matrix_factorization:epoch 0 3.1174519062042236
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.2097327709197998
INFO:birdwatch.matrix_factorization:epoch 20 0.6702408194541931
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.35780924558639526
INFO:birdwatch.matrix_factorization:epoch 20 0.6042913198471069
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2741597890853882
INFO:birdwatch.matrix_factorization:epoch 40 0.37693291902542114
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2036038637161255
INFO:birdwatch.matrix_factorization:epoch 40 0.4510749876499176
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2899180054664612
INFO:birdwatch.matrix_factorization:epoch 80 0.11040268838405609
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08275434374809265
INFO:birdwatch.matrix_factorization:epoch 60 0.33923542499542236
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.19063740968704224
INFO:birdwatch.matrix_factorization:epoch 80 0.3333747982978821
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.188731387257576
INFO:birdwatch.matrix_factorization:epoch 60 0.4177025556564331
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2781203091144562
INFO:birdwatch.matrix_factorization:epoch 100 0.332400918006897
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1884804368019104
INFO:birdwatch.matrix_factorization:Num epochs: 102
INFO:birdwatch.matrix_factorization:epoch 102 0.3324318528175354
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.18854758143424988
INFO:birdwatch.matrix_factorization:Global Intercept: -0.28552383184432983
INFO:birdwatch.scorer:MFGroupScorer_2 Harassment tag consensus elapsed time: 5.38 secs (0.09 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFGroupScorer_2 Helpfulness scores post-harassment elapsed time: 0.32 secs (0.01 mins)
INFO:birdwatch.matrix_factorization:epoch 80 0.41320937871932983
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.275778204202652
INFO:birdwatch.helpfulness_scores:Unique Raters: 9848
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 42685
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 8606
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 7425
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 904592
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 663894
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 7425, Notes: 69416
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 9.56399101071799
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 89.41333333333333
INFO:birdwatch.matrix_factorization:epoch 0 0.3908115029335022
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3216673731803894
INFO:birdwatch.matrix_factorization:epoch 100 0.41262438893318176
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2755293548107147
INFO:birdwatch.matrix_factorization:epoch 20 0.10757246613502502
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07446270436048508
INFO:birdwatch.matrix_factorization:epoch 120 0.4125490188598633
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2755182087421417
INFO:birdwatch.matrix_factorization:epoch 40 0.10324550420045853
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07333981245756149
INFO:birdwatch.matrix_factorization:Num epochs: 132
INFO:birdwatch.matrix_factorization:epoch 132 0.4125423729419708
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2755069434642792
INFO:birdwatch.matrix_factorization:Global Intercept: -0.2101941704750061
INFO:birdwatch.scorer:MFGroupScorer_4 Harassment tag consensus elapsed time: 12.91 secs (0.22 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFGroupScorer_4 Helpfulness scores post-harassment elapsed time: 0.43 secs (0.01 mins)
INFO:birdwatch.matrix_factorization:epoch 60 0.10175684094429016
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07066280394792557
INFO:birdwatch.matrix_factorization:Num epochs: 73
INFO:birdwatch.matrix_factorization:epoch 73 0.10167042911052704
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07047589123249054
INFO:birdwatch.matrix_factorization:Global Intercept: 0.17347291111946106
INFO:birdwatch.constants:Final round MF elapsed time: 6.61 secs (0.11 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_2 prescoring, about to call diligence with 663894 final round ratings.
INFO:birdwatch.helpfulness_scores:Unique Raters: 14590
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 39083
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 10836
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 00007F6B0991C1CA1DF283A7615A79999117CAC8C962A5... 0.070908
1 0000FDC49B38F4C994CAA60961F88FB421B03D0D43F499... -0.285049
2 001BE45AE64F526CFC3CC1B706DE3D812A6063976CA65D... -0.403973
3 0020A81474D2B3E0479ED2BB0A5577F54852D9381A5DD3... -0.163264
4 00378C3EEC142CC75F89B1EBCE084827285C05474A43F0... 0.015326
... ... ...
7420 FFE33E8172BAD7A1575F60FCAB8012D6BE7798D2C8A26D... -0.322799
7421 FFEC26DAD31FB175031B1A676DACDDFE983F60DAFA8985... -0.639325
7422 FFF8F9C2C8D0118227B1D6295B8CF7BA535B2A44B2EDEF... -0.539850
7423 FFFF33553CB8A72FF1CB6FB663CED93F292F0D2C161852... -0.467893
7424 FFFF82FC0D34E74125C0E5C894E335531C58342FB7C039... -0.882820
[7425 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 7425, vs. num we are initializing: 7425
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 7425
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=16.804531 | time=0.0s
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 10027
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 1528388
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 983865
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 10027, Notes: 61107
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 16.100692228386272
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 98.1215717562581
INFO:birdwatch.matrix_factorization:epoch 0 0.3892819285392761
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3207399547100067
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.445824 | time=1.5s
INFO:birdwatch.matrix_factorization:epoch 100 0.10988889634609222
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08249671757221222
INFO:birdwatch.matrix_factorization:epoch 80 0.44207409024238586
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3240014910697937
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.996797 | time=3.1s
INFO:birdwatch.matrix_factorization:epoch 20 0.09804782271385193
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06480919569730759
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.909093 | time=4.6s
INFO:birdwatch.matrix_factorization:epoch 40 0.09472730755805969
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06550641357898712
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.877876 | time=6.2s
INFO:birdwatch.matrix_factorization:epoch 60 0.09416499733924866
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06453821808099747
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=2.861392 | time=7.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=2.851243 | time=9.3s
INFO:birdwatch.matrix_factorization:epoch 80 0.0940105989575386
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06372792273759842
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=2.844467 | time=10.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=2.839929 | time=12.4s
INFO:birdwatch.matrix_factorization:epoch 100 0.09400354325771332
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06372714787721634
INFO:birdwatch.matrix_factorization:Num epochs: 101
INFO:birdwatch.matrix_factorization:epoch 101 0.09400354325771332
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06372714787721634
INFO:birdwatch.matrix_factorization:Global Intercept: 0.17005860805511475
INFO:birdwatch.constants:Final round MF elapsed time: 14.03 secs (0.23 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_4 prescoring, about to call diligence with 983865 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 0011AB5425173F62E5D4A1787E34ED324BDD5807D4C3B8... -0.560774
1 001C8D32D1F35CAC07983265BA3F769C6976F5A71141E4... 0.412092
2 0026D52237BA91FDF564C99A30B594C53E0E5E7CF76F5C... 0.575215
3 003B5BBD63338E6ECB7DA6F16AC010576B506676849D76... 0.310459
4 003CE80F068D189A05BBA9748FCA578819680378FBDEB7... -0.453448
... ... ...
10022 FFD3B8B9E935D1D393558464F9172AF81C6CF5E76C31EA... 0.378896
10023 FFDCC6136CBDCE1394D680A912CB4203DE5D035006979B... 0.509281
10024 FFEC392A6B742286C786DE71BB4102B6804FF360A00B3A... 0.174046
10025 FFF10C79740909DEDBBF234382D89BF3F3D4750C5E983B... -0.228667
10026 FFF89590FF300D0348631F2F16AA908F663A888A3F82E0... -0.307492
[10027 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 10027, vs. num we are initializing: 10027
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 10027
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=19.271133 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=2.836694 | time=13.9s
INFO:birdwatch.matrix_factorization:epoch 120 0.10983089357614517
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08246933668851852
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=2.834486 | time=15.4s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(0.0472, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=2.834427 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.629673 | time=2.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.690030 | time=1.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.151716 | time=4.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.680003 | time=3.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.679054 | time=4.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=3.078675 | time=7.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=110 | loss=1.678900 | time=5.6s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.499240 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.428317 | time=0.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.427418 | time=1.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=3.058941 | time=9.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.427381 | time=2.2s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(1.0585, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 2.8345, 1.6789, 0.4274
INFO:birdwatch.scorer:MFGroupScorer_2 Low Diligence MF elapsed time: 24.02 secs (0.40 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=3.050554 | time=11.8s
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.matrix_factorization:epoch 140 0.1098230704665184
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.082444928586483
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=3.045908 | time=14.3s
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.73 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.80 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.62 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:Num epochs: 147
INFO:birdwatch.matrix_factorization:epoch 147 0.10982239246368408
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08244722336530685
INFO:birdwatch.matrix_factorization:Global Intercept: 0.16845667362213135
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=3.042941 | time=16.7s
INFO:birdwatch.scorer:MFGroupScorer_3 First MF/stable init elapsed time: 95.98 secs (1.60 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFGroupScorer_3
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.83 secs (0.01 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=3.040934 | time=19.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=3.039437 | time=21.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=3.038357 | time=23.7s
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(0.7240, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=3.038324 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.909907 | time=2.3s
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.62 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 540525, Notes: 1117642
INFO:birdwatch.matrix_factorization:initializing notes
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.79 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:epoch 20 0.7069830298423767
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.4395275115966797
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.899021 | time=4.5s
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.66 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.60 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 54.91826989322162
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 113.5543499375607
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.80 secs (0.01 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.898278 | time=7.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=100 | loss=1.898255 | time=7.7s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.454790 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.381626 | time=1.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.380737 | time=2.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.380699 | time=3.4s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(1.7993, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 3.0384, 1.8983, 0.3807
INFO:birdwatch.scorer:MFGroupScorer_4 Low Diligence MF elapsed time: 36.15 secs (0.60 mins)
INFO:birdwatch.matrix_factorization:epoch 0 3.2270126342773438
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.4697400331497192
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.74 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.66 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.75 secs (0.01 mins)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.10 secs (0.57 mins)
INFO:birdwatch.constants:MFGroupScorer_2: Compute tag thresholds for percentiles elapsed time: 1.63 secs (0.03 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.run_scoring:MFGroupScorer_1 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.matrix_factorization:epoch 100 0.44119179248809814
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.32353708148002625
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 35.33 secs (0.59 mins)
INFO:birdwatch.scorer:MFGroupScorer_3 Compute scored notes elapsed time: 49.03 secs (0.82 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.note_ratings:Total ratings: 6271825 post-tombstones and 1165 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 4659256, including 4659244 post-tombstones and 12 pre-tombstones.
INFO:birdwatch.note_ratings:Total valid ratings: 490631
INFO:birdwatch.scorer:MFGroupScorer_3 Compute valid ratings elapsed time: 7.46 secs (0.12 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_3 Helpfulness scores pre-harassment elapsed time: 0.79 secs (0.01 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 51204
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 102321
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 44063
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 36.78 secs (0.61 mins)
INFO:birdwatch.run_scoring:MFGroupScorer_1 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_1 run_scorer_parallelizable: Loading data elapsed time: 25.12 secs (0.42 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFGroupScorer_1 set to: 4
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 40373
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 5544045
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 4520142
INFO:birdwatch.scorer:MFGroupScorer_3 Filtering by helpfulness score elapsed time: 7.47 secs (0.12 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 3026563
1 148763
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 1344816
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 2998892, Num Unique Notes Rated: 108472, Num Unique Raters: 38303
INFO:birdwatch.constants:MFGroupScorer_4: Compute tag thresholds for percentiles elapsed time: 2.21 secs (0.04 mins)
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 2869664
1 129228
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.043091915280710345
INFO:birdwatch.matrix_factorization:Using pos weight: 22.206209180672918 with BCEWithLogitsLoss
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 38303, Notes: 108472
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 27.646692233940556
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 78.29391953632874
INFO:birdwatch.run_scoring:MFGroupScorer_14 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.matrix_factorization:epoch 0 3.463493585586548
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.5612633228302002
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_1. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.matrix_factorization:epoch 20 0.6911249160766602
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3789512813091278
INFO:birdwatch.matrix_factorization:epoch 40 0.45819544792175293
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.29484790563583374
INFO:birdwatch.matrix_factorization:epoch 60 0.4250757694244385
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.28319868445396423
INFO:birdwatch.run_scoring:MFGroupScorer_14 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_14 run_scorer_parallelizable: Loading data elapsed time: 24.93 secs (0.42 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFGroupScorer_14 set to: 4
INFO:birdwatch.matrix_factorization:epoch 40 0.48641249537467957
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.34751391410827637
INFO:birdwatch.matrix_factorization:epoch 80 0.4205896258354187
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2810693085193634
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_14. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.matrix_factorization:epoch 20 0.7068841457366943
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.4395037293434143
INFO:birdwatch.matrix_factorization:epoch 100 0.4199836552143097
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2807298004627228
INFO:birdwatch.matrix_factorization:Num epochs: 104
INFO:birdwatch.matrix_factorization:epoch 104 0.4199780225753784
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2807644009590149
INFO:birdwatch.matrix_factorization:Global Intercept: -0.24957284331321716
INFO:birdwatch.scorer:MFGroupScorer_3 Harassment tag consensus elapsed time: 42.80 secs (0.71 mins)
INFO:birdwatch.scorer: Ratings without assigned group: 0
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFGroupScorer_3 Helpfulness scores post-harassment elapsed time: 1.12 secs (0.02 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 51204
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 102321
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 38319
INFO:birdwatch.scorer: Ratings after group filter: 6106169
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 34629
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 5544045
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 3271398
INFO:birdwatch.scorer:MFGroupScorer_1 Filter input elapsed time: 52.21 secs (0.87 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 34629, Notes: 170629
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 19.172579104372645
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 94.46989517456467
INFO:birdwatch.matrix_factorization:epoch 0 0.37313419580459595
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3077939450740814
INFO:birdwatch.matrix_factorization:epoch 120 0.44105207920074463
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.32347816228866577
INFO:birdwatch.mf_base_scorer:ratings summary MFGroupScorer_1: 40984a6198d81aae57f48c13da68514b5f8cd105236ca3356b05f29c643d788d
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 5427307, Num Unique Notes Rated: 146459, Num Unique Raters: 56037
INFO:birdwatch.scorer:MFGroupScorer_1 Prepare ratings elapsed time: 2.95 secs (0.05 mins)
INFO:birdwatch.matrix_factorization:epoch 20 0.1064104437828064
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07622941583395004
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFGroupScorer_1: f1a506ab855814d809e5a88ab0a1da18454e1be6218d52e0f4181b0724376828
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFGroupScorer_1: 6f492efd4f4511d61fd17a59c8e01c6947c592b05ce271b1f1bd38d02d012c73
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFGroupScorer_1: 1399dc2994266dc0c33b0e8cbb6bd1846586e58449dac3e640a99ce2ffc5effa
INFO:birdwatch.matrix_factorization:epoch 40 0.10472710430622101
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07755328714847565
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 56037, Notes: 146459
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 37.05683501867417
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 96.85220479326159
INFO:birdwatch.matrix_factorization:epoch 0 6.283523082733154
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 5.8318586349487305
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.matrix_factorization:epoch 60 0.10342289507389069
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07481147348880768
INFO:birdwatch.scorer: Ratings after group filter: 11425870
INFO:birdwatch.matrix_factorization:Num epochs: 128
INFO:birdwatch.matrix_factorization:epoch 128 0.4410378336906433
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.32347553968429565
INFO:birdwatch.matrix_factorization:Global Intercept: -0.20342975854873657
INFO:birdwatch.scorer:MFGroupScorer_14 Filter input elapsed time: 52.69 secs (0.88 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.scorer:MFCoreScorer Harassment tag consensus elapsed time: 584.45 secs (9.74 mins)
INFO:birdwatch.matrix_factorization:epoch 20 0.3523634970188141
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.29398736357688904
INFO:birdwatch.matrix_factorization:epoch 80 0.10336979478597641
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07482481002807617
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.matrix_factorization:epoch 100 0.1033562421798706
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07459260523319244
INFO:birdwatch.matrix_factorization:Num epochs: 103
INFO:birdwatch.matrix_factorization:epoch 103 0.10335546731948853
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07474108040332794
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1712927222251892
INFO:birdwatch.constants:Final round MF elapsed time: 48.54 secs (0.81 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_3 prescoring, about to call diligence with 3271398 final round ratings.
INFO:birdwatch.mf_base_scorer:ratings summary MFGroupScorer_14: 8750fbc0c4a8c6856c0715a3c2a3bee99a099cc1d1585c5b7578c6bc4577c403
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 000011269AD6F327AED0F4086A732B4052F9D28E8791E1... -0.093447
1 00005300B9017670433392BF6767238D54E058EC25D5C5... -0.269374
2 0006F1E9A72BC327122346B1EC672566F8DE4304BC7813... -0.141926
3 0008CE6A2932D0D88C4965BDA83BD8CE906EC91A951066... -0.599729
4 00099B57E40688AFECCE8A3415A2AC45FD8944C33ACB9C... -0.491374
... ... ...
34624 FFFBB4B078CA1D3C3E23B986FA1A0BD4B3081E70C2B274... -0.753161
34625 FFFC156EAADE44C6CB99B0EB02DB63AAA7DC330AFC0E4B... -0.631799
34626 FFFC37B8B75A047FC218F52FF5F03C876A906BD09B0F34... 0.293752
34627 FFFD98FC04D3E1615C8BF2617DA7EA6BAEDCED7C9BFDC0... -0.252223
34628 FFFECB9745EFB9D109358D450779F68A96A14C9AC03AD4... -0.541202
[34629 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 34629, vs. num we are initializing: 34629
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 34629
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=14.805888 | time=0.0s
INFO:birdwatch.matrix_factorization:epoch 40 0.13850364089012146
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10664162039756775
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 10521432, Num Unique Notes Rated: 399883, Num Unique Raters: 60009
INFO:birdwatch.scorer:MFGroupScorer_14 Prepare ratings elapsed time: 5.52 secs (0.09 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.496497 | time=7.5s
INFO:birdwatch.matrix_factorization:epoch 60 0.11227183789014816
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08500148355960846
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFCoreScorer Helpfulness scores post-harassment elapsed time: 25.70 secs (0.43 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.157873 | time=15.0s
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFGroupScorer_14: 713b9493c620526b010044f56ad866b782e1ee54f793c296a29914910260195b
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFGroupScorer_14: 6f492efd4f4511d61fd17a59c8e01c6947c592b05ce271b1f1bd38d02d012c73
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFGroupScorer_14: 1399dc2994266dc0c33b0e8cbb6bd1846586e58449dac3e640a99ce2ffc5effa
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=3.109315 | time=22.5s
INFO:birdwatch.matrix_factorization:epoch 60 0.4547945559024811
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.33430689573287964
INFO:birdwatch.matrix_factorization:epoch 80 0.10882274806499481
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08255541324615479
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 60009, Notes: 399883
INFO:birdwatch.matrix_factorization:learning rate set to :0.02
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 26.31127604824411
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 175.33090036494525
INFO:birdwatch.matrix_factorization:epoch 0 0.5226768851280212
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.5221538543701172
INFO:birdwatch.matrix_factorization:epoch 40 0.48637136816978455
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3475351333618164
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=3.096207 | time=30.0s
INFO:birdwatch.matrix_factorization:epoch 100 0.10838336497545242
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08214987069368362
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=3.090390 | time=37.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=3.086958 | time=44.9s
INFO:birdwatch.matrix_factorization:epoch 20 0.1959424614906311
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1440804898738861
INFO:birdwatch.matrix_factorization:epoch 120 0.10832209885120392
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08201057463884354
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=3.084658 | time=52.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=3.082972 | time=59.9s
INFO:birdwatch.matrix_factorization:epoch 140 0.10831545293331146
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08201276510953903
INFO:birdwatch.matrix_factorization:Num epochs: 144
INFO:birdwatch.matrix_factorization:epoch 144 0.10831514745950699
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08201918751001358
INFO:birdwatch.matrix_factorization:Global Intercept: 0.16088883578777313
INFO:birdwatch.scorer:MFGroupScorer_1 First MF/stable init elapsed time: 92.06 secs (1.53 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFGroupScorer_1
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=3.081795 | time=67.5s
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.matrix_factorization:epoch 40 0.13994905352592468
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10389752686023712
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.71 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.90 secs (0.02 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.84 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=3.080969 | time=75.0s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(0.5107, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=3.080947 | time=0.0s
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.77 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.84 secs (0.01 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.918434 | time=7.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.907470 | time=14.4s
INFO:birdwatch.matrix_factorization:epoch 60 0.12313978374004364
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09042132645845413
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.906580 | time=21.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=105 | loss=1.906534 | time=25.1s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.438351 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.356483 | time=4.3s
INFO:birdwatch.matrix_factorization:epoch 80 0.45029357075691223
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3314984142780304
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.355480 | time=8.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.355439 | time=10.7s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(1.6631, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 3.0810, 1.9065, 0.3554
INFO:birdwatch.scorer:MFGroupScorer_3 Low Diligence MF elapsed time: 114.44 secs (1.91 mins)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.97 secs (0.58 mins)
INFO:birdwatch.scorer:MFGroupScorer_1 Compute scored notes elapsed time: 48.02 secs (0.80 mins)
INFO:birdwatch.matrix_factorization:epoch 60 0.45473241806030273
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3342928886413574
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.matrix_factorization:epoch 80 0.11913703382015228
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08904113620519638
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.note_ratings:Total ratings: 6104849 post-tombstones and 1320 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 4684275, including 4684274 post-tombstones and 1 pre-tombstones.
INFO:birdwatch.note_ratings:Total valid ratings: 403022
INFO:birdwatch.scorer:MFGroupScorer_1 Compute valid ratings elapsed time: 7.25 secs (0.12 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_1 Helpfulness scores pre-harassment elapsed time: 0.61 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.60 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.74 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.71 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.72 secs (0.01 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 56037
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 97085
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 45259
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 40803
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 5427307
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 4322552
INFO:birdwatch.scorer:MFGroupScorer_1 Filtering by helpfulness score elapsed time: 7.11 secs (0.12 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 2776055
1 172083
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 1374414
INFO:birdwatch.helpfulness_scores:Unique Raters: 599301
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 582446
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 413599
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 2798248, Num Unique Notes Rated: 93980, Num Unique Raters: 38669
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 2644212
1 154036
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.05504730102549881
INFO:birdwatch.matrix_factorization:Using pos weight: 17.166194915474303 with BCEWithLogitsLoss
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 38669, Notes: 93980
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 29.774930836348158
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 72.36411595851975
INFO:birdwatch.matrix_factorization:epoch 0 3.4313859939575195
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.536501407623291
INFO:birdwatch.matrix_factorization:epoch 100 0.11795955896377563
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08898502588272095
INFO:birdwatch.matrix_factorization:epoch 20 0.692321240901947
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.37830930948257446
INFO:birdwatch.matrix_factorization:epoch 40 0.46363604068756104
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3071403205394745
INFO:birdwatch.matrix_factorization:epoch 60 0.4301488399505615
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2954534888267517
INFO:birdwatch.matrix_factorization:epoch 80 0.42568063735961914
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2930283844470978
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.33 secs (0.57 mins)
INFO:birdwatch.matrix_factorization:epoch 120 0.11748424917459488
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08904341608285904
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 382560
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 102895565
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 53270228
INFO:birdwatch.matrix_factorization:epoch 100 0.4250508248806
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2928185760974884
INFO:birdwatch.constants:MFGroupScorer_3: Compute tag thresholds for percentiles elapsed time: 8.10 secs (0.14 mins)
INFO:birdwatch.matrix_factorization:epoch 120 0.4249611496925354
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2927919626235962
INFO:birdwatch.matrix_factorization:Num epochs: 130
INFO:birdwatch.matrix_factorization:epoch 130 0.42495229840278625
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.29278215765953064
INFO:birdwatch.matrix_factorization:Global Intercept: -0.23114803433418274
INFO:birdwatch.scorer:MFGroupScorer_1 Harassment tag consensus elapsed time: 46.58 secs (0.78 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFGroupScorer_1 Helpfulness scores post-harassment elapsed time: 1.08 secs (0.02 mins)
INFO:birdwatch.run_scoring:MFTopicScorer_Unassigned run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.helpfulness_scores:Unique Raters: 56037
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 97085
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 41587
INFO:birdwatch.matrix_factorization:epoch 140 0.11721114069223404
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08911249041557312
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 37131
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 5427307
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 3354212
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 37131, Notes: 146091
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 22.95974426898303
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 90.33454525867873
INFO:birdwatch.matrix_factorization:epoch 0 0.39958667755126953
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.33497971296310425
INFO:birdwatch.matrix_factorization:epoch 20 0.11128383129835129
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08071509003639221
INFO:birdwatch.matrix_factorization:epoch 100 0.4496009349822998
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.33117789030075073
INFO:birdwatch.matrix_factorization:epoch 80 0.4502350389957428
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.33148500323295593
INFO:birdwatch.run_scoring:MFTopicScorer_Unassigned run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFTopicScorer_Unassigned run_scorer_parallelizable: Loading data elapsed time: 23.74 secs (0.40 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFTopicScorer_Unassigned set to: 4
INFO:birdwatch.matrix_factorization:epoch 40 0.10741733014583588
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08088459819555283
INFO:birdwatch.matrix_factorization:epoch 160 0.1170102059841156
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08917636424303055
INFO:birdwatch.scorer:Filtering ratings for MFTopicScorer_Unassigned. Original rating length: 120945188
INFO:birdwatch.matrix_factorization:epoch 60 0.10678169876337051
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07980678230524063
INFO:birdwatch.scorer: Ratings after topic filter: 0
INFO:birdwatch.scorer: Ratings after group filter: 0
INIT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/scorer.py, in prescore, at line 286: pd.DataFrame(columns=self.get_internal_scored_notes_cols()),
PandasTypeError: Type expectation mismatch on noteId: found=object expected=int64
INFO:birdwatch.scorer:MFTopicScorer_Unassigned Filter input elapsed time: 11.44 secs (0.19 mins)
INFO:birdwatch.run_scoring:MFTopicScorer_UkraineConflict run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.matrix_factorization:epoch 80 0.1066134124994278
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07897433638572693
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 382560, Notes: 1225337
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 43.473940638371324
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 139.24672731074864
INFO:birdwatch.matrix_factorization:epoch 100 0.10660293698310852
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07898107916116714
INFO:birdwatch.matrix_factorization:Num epochs: 101
INFO:birdwatch.matrix_factorization:epoch 101 0.10660293698310852
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07898107916116714
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1644572913646698
INFO:birdwatch.constants:Final round MF elapsed time: 49.46 secs (0.82 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_1 prescoring, about to call diligence with 3354212 final round ratings.
INFO:birdwatch.matrix_factorization:epoch 0 0.37755998969078064
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3174588978290558
INFO:birdwatch.matrix_factorization:epoch 180 0.1168489009141922
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08924125880002975
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 0000D09E403B665ADB698D8DF843CB22F352EF89ABF7CB... -0.543661
1 00037C8B3793B9E44C7885F55752A06806091F68598CC0... -0.515672
2 00039991A9322D52F83399BC5B951F43B2A73869C21F10... -0.601601
3 000402D0CF8FEC70E5C4BA76322215AE1A965BBE8A7568... 0.268096
4 0004DC6827440EF91C141691934452677C533B6CA90AC4... -0.288777
... ... ...
37126 FFF1B7F5E3903007BC3D5724DA6C406F78DEE26BE8456C... 0.473115
37127 FFF48D8AD66904B961AF600709250FD2CB54004147EB44... -0.198971
37128 FFF8367EF46CACBB9D7C020C910B12A206DAC9BA5E05A9... -0.438402
37129 FFF9D85CEB466E2694589895B9D234CD48219AC8D3ADC4... -0.194319
37130 FFFDEAD3B6BBA58927423C9C907473FD24FFEEACB4396E... 0.091560
[37131 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 37131, vs. num we are initializing: 37131
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 37131
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=18.543821 | time=0.1s
INFO:birdwatch.run_scoring:MFTopicScorer_UkraineConflict run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFTopicScorer_UkraineConflict run_scorer_parallelizable: Loading data elapsed time: 24.11 secs (0.40 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFTopicScorer_UkraineConflict set to: 4
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.750908 | time=8.2s
INFO:birdwatch.scorer:Filtering ratings for MFTopicScorer_UkraineConflict. Original rating length: 120945188
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.313851 | time=15.9s
INFO:birdwatch.matrix_factorization:epoch 200 0.11671170592308044
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08930625766515732
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=3.252604 | time=23.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=3.237291 | time=31.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=3.231471 | time=39.0s
INFO:birdwatch.matrix_factorization:epoch 220 0.11659480631351471
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08937092870473862
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=3.228590 | time=46.6s
INFO:birdwatch.scorer: Ratings after topic filter: 4141060
INFO:birdwatch.scorer: Ratings after group filter: 4141060
INFO:birdwatch.scorer:MFTopicScorer_UkraineConflict Filter input elapsed time: 42.09 secs (0.70 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.matrix_factorization:epoch 120 0.4494892358779907
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3311305642127991
INFO:birdwatch.mf_base_scorer:ratings summary MFTopicScorer_UkraineConflict: 3ebbbc69ceb15ad170a310e32ddccee8e28dd5fa596a775769dbd80fe23e2fab
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=3.226951 | time=54.3s
INFO:birdwatch.matrix_factorization:epoch 100 0.4495398998260498
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.331163227558136
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 3246773, Num Unique Notes Rated: 36447, Num Unique Raters: 78578
INFO:birdwatch.scorer:MFTopicScorer_UkraineConflict Prepare ratings elapsed time: 2.43 secs (0.04 mins)
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFTopicScorer_UkraineConflict: 8c50a83542a2436dbc3a9b7e5f8d96cfff3cdfb4a8b3da0eee95159465cc8168
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFTopicScorer_UkraineConflict: 2b4d08da3b75cca6e752f688fedada6e794b7f40adf61c96bb398a7a5c1e1937
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFTopicScorer_UkraineConflict: 1399dc2994266dc0c33b0e8cbb6bd1846586e58449dac3e640a99ce2ffc5effa
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 78578, Notes: 36447
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 89.0820369303372
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 41.31910967446359
INFO:birdwatch.matrix_factorization:epoch 0 6.647773742675781
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.182163238525391
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=3.225983 | time=62.0s
INFO:birdwatch.matrix_factorization:epoch 240 0.11649289727210999
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08943793922662735
INFO:birdwatch.matrix_factorization:epoch 20 0.32890453934669495
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.27723658084869385
INFO:birdwatch.matrix_factorization:epoch 20 0.11145132780075073
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0823032334446907
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=3.225348 | time=69.7s
INFO:birdwatch.matrix_factorization:epoch 40 0.12462562322616577
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08701226860284805
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=3.224914 | time=77.3s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(1.0254, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=3.224902 | time=0.0s
INFO:birdwatch.matrix_factorization:Num epochs: 127
INFO:birdwatch.matrix_factorization:epoch 127 0.44947731494903564
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.33112481236457825
INFO:birdwatch.matrix_factorization:Global Intercept: -0.2023831307888031
INFO:birdwatch.scorer:MFExpansionPlusScorer Harassment tag consensus elapsed time: 682.20 secs (11.37 mins)
INFO:birdwatch.matrix_factorization:epoch 60 0.09235216677188873
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06311653554439545
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.035035 | time=7.4s
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.matrix_factorization:epoch 80 0.08770240843296051
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06003275513648987
INFO:birdwatch.matrix_factorization:epoch 260 0.1163988932967186
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08950584381818771
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.024729 | time=14.8s
INFO:birdwatch.matrix_factorization:epoch 100 0.0871426984667778
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05961025878787041
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.023927 | time=22.2s
INFO:birdwatch.matrix_factorization:epoch 120 0.08706974983215332
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0595758818089962
INFO:birdwatch.reputation_matrix_factorization:epoch=100 | loss=2.023901 | time=24.6s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.398614 | time=0.0s
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFExpansionPlusScorer Helpfulness scores post-harassment elapsed time: 25.16 secs (0.42 mins)
INFO:birdwatch.matrix_factorization:epoch 140 0.08705941587686539
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05956045538187027
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.317246 | time=4.4s
INFO:birdwatch.matrix_factorization:Num epochs: 144
INFO:birdwatch.matrix_factorization:epoch 144 0.08705910295248032
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05955982208251953
INFO:birdwatch.matrix_factorization:Global Intercept: 0.15050366520881653
INFO:birdwatch.scorer:MFTopicScorer_UkraineConflict First MF/stable init elapsed time: 47.95 secs (0.80 mins)
INFO:birdwatch.mf_base_scorer:Skipping rep-filtering in prescoring for MFTopicScorer_UkraineConflict
/home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py:573: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
helpfulnessScores[
INFO:birdwatch.mf_base_scorer:In MFTopicScorer_UkraineConflict prescoring, about to call diligence with 3246773 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 056B1936908F42285AC8A4E4CD928C9BC3DAD8547FEE39... -0.729328
1 F35972BBD2F99515FD974E9C7AFD899970F2E4A5911513... 0.162987
2 67B54620C2319FCDE70894F7B1D89C882952908664A35D... -0.816580
3 E23374E04DD1B97ED5E4BE68F56CD25AE5DE53DD2A3541... -0.217508
4 E462D40CC316ED0864D77A36DA000DA98A8A6F61C204DE... -0.774798
... ... ...
78573 7F7389294115E9220A24B85275C74D18FDB99EEB0E14D7... -0.679234
78574 9807DA2C5AE0CAD796716CE294B7C2B934961C61D93F10... -0.070162
78575 B1FFD6BD0C720E70F89339D884134220B070056E256926... -0.554269
78576 59ADB7D6CCD4A96D5D78ADFA69D331F9929C1E1998457C... 0.498540
78577 148D27E8C205D49A0E19D2092330015CC9FE372C3683D2... 0.228918
[78578 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 78578, vs. num we are initializing: 78578
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 78578
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=20.511316 | time=0.1s
INFO:birdwatch.matrix_factorization:epoch 280 0.11631342768669128
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0895763412117958
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.316269 | time=8.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.316227 | time=11.1s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(2.2295, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 3.2249, 2.0239, 0.3162
INFO:birdwatch.scorer:MFGroupScorer_1 Low Diligence MF elapsed time: 116.81 secs (1.95 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.776832 | time=8.1s
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.89 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.73 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.66 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.95 secs (0.02 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.266505 | time=16.2s
INFO:birdwatch.matrix_factorization:epoch 300 0.11623996496200562
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08964435756206512
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=3.198164 | time=24.3s
INFO:birdwatch.matrix_factorization:epoch 40 0.10985996574163437
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08399942517280579
INFO:birdwatch.matrix_factorization:epoch 120 0.44942978024482727
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.33111733198165894
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=3.183880 | time=32.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=3.179201 | time=40.5s
INFO:birdwatch.matrix_factorization:epoch 320 0.11617498844861984
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08971162140369415
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=3.177233 | time=48.5s
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 33.44 secs (0.56 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=3.176270 | time=56.5s
INFO:birdwatch.constants:MFGroupScorer_1: Compute tag thresholds for percentiles elapsed time: 8.69 secs (0.14 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=3.175751 | time=64.6s
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.run_scoring:MFTopicScorer_GazaConflict run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.matrix_factorization:epoch 340 0.11611758172512054
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08977796137332916
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=3.175466 | time=73.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=3.175302 | time=82.5s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(1.3169, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=3.175298 | time=0.0s
INFO:birdwatch.run_scoring:MFTopicScorer_GazaConflict run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFTopicScorer_GazaConflict run_scorer_parallelizable: Loading data elapsed time: 24.12 secs (0.40 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFTopicScorer_GazaConflict set to: 4
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.833224 | time=7.8s
INFO:birdwatch.matrix_factorization:epoch 360 0.11606357246637344
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0898435115814209
INFO:birdwatch.scorer:Filtering ratings for MFTopicScorer_GazaConflict. Original rating length: 120945188
INFO:birdwatch.matrix_factorization:epoch 60 0.10892382264137268
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08213447779417038
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.826188 | time=15.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.825087 | time=23.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.825087 | time=23.2s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.292382 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.203168 | time=4.7s
INFO:birdwatch.matrix_factorization:epoch 380 0.11602069437503815
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0899050161242485
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.202120 | time=9.3s
INFO:birdwatch.matrix_factorization:epoch 140 0.44940435886383057
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.33110469579696655
INFO:birdwatch.matrix_factorization:Num epochs: 141
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.202074 | time=11.6s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(3.1794, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 3.1753, 1.8251, 0.2021
INFO:birdwatch.matrix_factorization:epoch 141 0.44940435886383057
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.33110469579696655
INFO:birdwatch.matrix_factorization:Global Intercept: -0.2023589015007019
INFO:birdwatch.scorer:MFTopicScorer_UkraineConflict Low Diligence MF elapsed time: 121.25 secs (2.02 mins)
INFO:birdwatch.scorer:MFExpansionScorer Harassment tag consensus elapsed time: 738.64 secs (12.31 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 0.73 secs (0.01 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.helpfulness_scores:Unique Raters: 760595
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 722512
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 549629
INFO:birdwatch.constants:MFTopicScorer_UkraineConflict: Compute tag thresholds for percentiles elapsed time: 7.00 secs (0.12 mins)
INFO:birdwatch.scorer: Ratings after topic filter: 12154882
INFO:birdwatch.scorer: Ratings after group filter: 12154882
INFO:birdwatch.scorer:MFTopicScorer_GazaConflict Filter input elapsed time: 42.69 secs (0.71 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.matrix_factorization:epoch 400 0.11597800254821777
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08996281027793884
INFO:birdwatch.run_scoring:MFTopicScorer_MessiRonaldo run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.matrix_factorization:Num epochs: 403
INFO:birdwatch.matrix_factorization:epoch 403 0.11597742885351181
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08996936678886414
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFExpansionScorer Helpfulness scores post-harassment elapsed time: 25.26 secs (0.42 mins)
INFO:birdwatch.mf_base_scorer:ratings summary MFTopicScorer_GazaConflict: 0899bc0f0b8e91f6d592ed88698b7285e7b1add26ce9f5b207e820ada6913ffa
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 11007207, Num Unique Notes Rated: 97238, Num Unique Raters: 162717
INFO:birdwatch.scorer:MFTopicScorer_GazaConflict Prepare ratings elapsed time: 6.22 secs (0.10 mins)
INFO:birdwatch.run_scoring:MFTopicScorer_MessiRonaldo run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFTopicScorer_MessiRonaldo run_scorer_parallelizable: Loading data elapsed time: 22.81 secs (0.38 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFTopicScorer_MessiRonaldo set to: 4
INFO:birdwatch.scorer:Filtering ratings for MFTopicScorer_MessiRonaldo. Original rating length: 120945188
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 60009, Notes: 399883
INFO:birdwatch.matrix_factorization:learning rate set to :0.02
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:epoch 0 0.12069502472877502
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.5224084258079529
INFO:birdwatch.matrix_factorization:epoch 80 0.1088177040219307
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08170998096466064
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 496789
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 119170712
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 62806087
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFTopicScorer_GazaConflict: 1e7e6706af13d46a8ac6024775a9bfaf6ebbbbf59c2cff623c20b50c6fea550e
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFTopicScorer_GazaConflict: efd733efe14125b19a0ebe45a27bba926b5b7b6bf1da864ff3ba9c6d7360dd80
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFTopicScorer_GazaConflict: 1399dc2994266dc0c33b0e8cbb6bd1846586e58449dac3e640a99ce2ffc5effa
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 162717, Notes: 97238
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 113.1986157674983
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 67.6463246003798
INFO:birdwatch.matrix_factorization:epoch 0 6.694653511047363
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.244139671325684
INFO:birdwatch.matrix_factorization:epoch 20 0.06298001110553741
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1837863177061081
INFO:birdwatch.scorer: Ratings after topic filter: 200420
INFO:birdwatch.scorer: Ratings after group filter: 200420
INFO:birdwatch.scorer:MFTopicScorer_MessiRonaldo Filter input elapsed time: 33.10 secs (0.55 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.mf_base_scorer:ratings summary MFTopicScorer_MessiRonaldo: e6d16f654b7f915c6719c982b2a372a78809faad60175103e807127208d34cbb
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 61938, Num Unique Notes Rated: 2412, Num Unique Raters: 2779
INFO:birdwatch.scorer:MFTopicScorer_MessiRonaldo Prepare ratings elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFTopicScorer_MessiRonaldo: 9df4e190b3da2713c39bb7713fd53cb2449d8a65127a41b7f0a875af8f84a2ea
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFTopicScorer_MessiRonaldo: dacd600322f45e8892bca58dfa4907e6e35fcea6a202ac110c602c2e19f75663
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFTopicScorer_MessiRonaldo: 1399dc2994266dc0c33b0e8cbb6bd1846586e58449dac3e640a99ce2ffc5effa
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 2779, Notes: 2412
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 25.67910447761194
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 22.28787333573228
INFO:birdwatch.matrix_factorization:epoch 0 6.993242263793945
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 6.488073825836182
INFO:birdwatch.matrix_factorization:epoch 20 0.3545120656490326
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2964816391468048
INFO:birdwatch.matrix_factorization:epoch 40 0.11567525565624237
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07354683429002762
INFO:birdwatch.matrix_factorization:epoch 60 0.08206673711538315
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.04683299362659454
INFO:birdwatch.matrix_factorization:epoch 80 0.07688583433628082
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.04257965087890625
INFO:birdwatch.matrix_factorization:epoch 100 0.07625867426395416
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.042176634073257446
INFO:birdwatch.matrix_factorization:epoch 120 0.07617507874965668
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.042144738137722015
INFO:birdwatch.matrix_factorization:epoch 140 0.07616481930017471
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.04213244840502739
INFO:birdwatch.matrix_factorization:Num epochs: 148
INFO:birdwatch.matrix_factorization:epoch 148 0.07616391777992249
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.04213307052850723
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1668098121881485
INFO:birdwatch.scorer:MFTopicScorer_MessiRonaldo First MF/stable init elapsed time: 1.58 secs (0.03 mins)
INFO:birdwatch.mf_base_scorer:Skipping rep-filtering in prescoring for MFTopicScorer_MessiRonaldo
/home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py:573: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
helpfulnessScores[
INFO:birdwatch.mf_base_scorer:In MFTopicScorer_MessiRonaldo prescoring, about to call diligence with 61938 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 90D27164DF30535EDB518FAD15DEE8728388F8CA14C75E... -0.769909
1 4E44139DB610989839A095579EBA2EF46825BF25E13FFD... 0.221982
2 2E31629F722BF87A215706A6311E21E123A4624B4D10E2... -0.752639
3 6745B794E9C46A45ABF33E250B5053EC684C28F888355F... -0.286003
4 5C923A1ACF69C684AFABDF63F42734BDCC5FE2B8E3611A... -0.630027
... ... ...
2774 045F1138655BBE7C9639E8A42B32AA1D7EE213DBD2832D... -0.572096
2775 9C215E6717E4162DE9313F8214978A746A4A62897430AB... 0.550050
2776 F8EE952D0039E1B181339BB21EB00307992E77E8E52CBF... 0.609762
2777 143AE16F0329577DFF5F747B4565E180A03048654AEBB6... -0.663425
2778 E10D7A9362563027C336080E747085D504D542CC799CFB... 0.529393
[2779 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 2779, vs. num we are initializing: 2779
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 2779
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=18.717415 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.410041 | time=0.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.804307 | time=0.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.696636 | time=0.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.668390 | time=1.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=2.656887 | time=1.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=2.651020 | time=1.5s
INFO:birdwatch.matrix_factorization:epoch 20 0.3629034757614136
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.31634023785591125
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=2.647699 | time=1.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=2.645640 | time=2.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=2.644296 | time=2.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=2.643394 | time=2.6s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(0.1359, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=2.643369 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.323995 | time=0.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.318010 | time=0.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.316943 | time=0.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.316943 | time=0.7s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.410452 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.306273 | time=0.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.305091 | time=0.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.305035 | time=0.4s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(1.8759, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 2.6434, 1.3169, 0.3050
INFO:birdwatch.scorer:MFTopicScorer_MessiRonaldo Low Diligence MF elapsed time: 3.82 secs (0.06 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 0.08 secs (0.00 mins)
INFO:birdwatch.constants:MFTopicScorer_MessiRonaldo: Compute tag thresholds for percentiles elapsed time: 0.28 secs (0.00 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.run_scoring:MFMultiGroupScorer_1 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.matrix_factorization:epoch 40 0.057055845856666565
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1782406121492386
INFO:birdwatch.matrix_factorization:epoch 40 0.11413615942001343
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0796656683087349
INFO:birdwatch.run_scoring:MFMultiGroupScorer_1 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFMultiGroupScorer_1 run_scorer_parallelizable: Loading data elapsed time: 23.88 secs (0.40 mins)
INFO:birdwatch.scorer:prescore: Torch intra-op parallelism for MFMultiGroupScorer_1 set to: 4
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 496789, Notes: 1319220
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 47.6085012355786
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 126.42406937351673
INFO:birdwatch.scorer:Filtering ratings for MFMultiGroupScorer_1. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.matrix_factorization:epoch 0 0.3719310164451599
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.31204769015312195
INFO:birdwatch.matrix_factorization:epoch 60 0.04865109547972679
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.12749989330768585
INFO:birdwatch.matrix_factorization:epoch 100 0.10880700498819351
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08162391185760498
INFO:birdwatch.matrix_factorization:Num epochs: 101
INFO:birdwatch.matrix_factorization:epoch 101 0.10880700498819351
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08162391185760498
INFO:birdwatch.matrix_factorization:Global Intercept: 0.16981279850006104
INFO:birdwatch.constants:Final round MF elapsed time: 558.46 secs (9.31 mins)
INFO:birdwatch.mf_base_scorer:In MFCoreScorer prescoring, about to call diligence with 53270228 final round ratings.
INFO:birdwatch.matrix_factorization:epoch 60 0.08603987842798233
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.058530088514089584
INFO:birdwatch.matrix_factorization:epoch 80 0.04556620121002197
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1157870888710022
INFO:birdwatch.matrix_factorization:epoch 80 0.08239531517028809
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.055343035608530045
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings after group filter: 6257534
INFO:birdwatch.scorer:MFMultiGroupScorer_1 Filter input elapsed time: 49.67 secs (0.83 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.helpfulness_scores:Unique Raters: 760575
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 722844
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 549781
INFO:birdwatch.matrix_factorization:epoch 100 0.08192259818315506
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05499133840203285
INFO:birdwatch.matrix_factorization:epoch 100 0.04448603838682175
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1144147738814354
INFO:birdwatch.mf_base_scorer:ratings summary MFMultiGroupScorer_1: 3f4d9b4462531bf76fcc90ca6df393aebf1250a906a431a895bfaae8edba864d
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 5396149, Num Unique Notes Rated: 227259, Num Unique Raters: 55432
INFO:birdwatch.scorer:MFMultiGroupScorer_1 Prepare ratings elapsed time: 2.86 secs (0.05 mins)
INFO:birdwatch.mf_base_scorer:ratingsForTraining summary MFMultiGroupScorer_1: 863bf755f5c7b4eb8d22d1649914d6eb22e7068147302217f10a86b6e3bc5555
INFO:birdwatch.mf_base_scorer:noteStatusHistory summary MFMultiGroupScorer_1: 6f492efd4f4511d61fd17a59c8e01c6947c592b05ce271b1f1bd38d02d012c73
INFO:birdwatch.mf_base_scorer:userEnrollmentRaw summary MFMultiGroupScorer_1: 1399dc2994266dc0c33b0e8cbb6bd1846586e58449dac3e640a99ce2ffc5effa
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 55432, Notes: 227259
INFO:birdwatch.matrix_factorization:learning rate set to :1.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 23.74448976718194
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 97.34718213306394
INFO:birdwatch.matrix_factorization:epoch 0 6.220770835876465
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 5.769021034240723
INFO:birdwatch.matrix_factorization:epoch 120 0.08185769617557526
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05496711656451225
INFO:birdwatch.matrix_factorization:epoch 120 0.04402000457048416
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11398404836654663
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 000011269AD6F327AED0F4086A732B4052F9D28E8791E1... -0.172086
1 000045A5FA0CF004F68CBF2913506C37D540CF48522D33... 0.691823
2 00005300B9017670433392BF6767238D54E058EC25D5C5... -0.284578
3 00007B885907790E492F8C9A31F1AFC20831279328C263... 0.437021
4 0000AE9A69E1B5D132C053E253DC42A007EDE2F11C39CF... 0.418497
... ... ...
382555 FFFFA008A90B7144EF2CC117355D4B4743C471CA9B2DCA... 0.497879
382556 FFFFAB2FDBC1968F4CFE97A86D88963D702B636365B6CD... 0.019430
382557 FFFFBBAB3C66ABB4DBC2A3B486C3C673345C89B5858465... 0.276673
382558 FFFFC819886B2F837503D840D59EE8321A835AAF2B5C1E... -0.188490
382559 FFFFFE8909485374E33854B934713713CAC93CDB50C9D0... 0.558081
[382560 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 382560, vs. num we are initializing: 382560
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 382560
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=15.795460 | time=0.7s
INFO:birdwatch.matrix_factorization:epoch 20 0.3171849548816681
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2528494894504547
INFO:birdwatch.matrix_factorization:epoch 20 0.11216723173856735
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08331191539764404
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 496867
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 119168555
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 62758781
INFO:birdwatch.matrix_factorization:epoch 140 0.08184971660375595
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.054957516491413116
INFO:birdwatch.matrix_factorization:epoch 40 0.15018439292907715
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11736781150102615
INFO:birdwatch.matrix_factorization:Num epochs: 145
INFO:birdwatch.matrix_factorization:epoch 145 0.08184927701950073
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05495864152908325
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1444670557975769
INFO:birdwatch.scorer:MFTopicScorer_GazaConflict First MF/stable init elapsed time: 152.20 secs (2.54 mins)
INFO:birdwatch.mf_base_scorer:Skipping rep-filtering in prescoring for MFTopicScorer_GazaConflict
/home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py:573: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
helpfulnessScores[
INFO:birdwatch.mf_base_scorer:In MFTopicScorer_GazaConflict prescoring, about to call diligence with 11007207 final round ratings.
INFO:birdwatch.matrix_factorization:epoch 140 0.0437372662127018
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11355447769165039
INFO:birdwatch.matrix_factorization:epoch 60 0.1191929280757904
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08953303843736649
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 F35972BBD2F99515FD974E9C7AFD899970F2E4A5911513... 0.703149
1 9E93A0C21A1CD3DD7C3A772E71A2DD0B6E79103B020A32... 0.786631
2 EF12C150CE8A147E0804CFBEA80649018A15435E54C4E5... 0.818830
3 EBDCB80B1EC4A9FB51C8A562377D72F9569692DEFFC8BC... 0.645276
4 70B62959F72CA22F3697BD4E5674B3990AD91893FD9320... 0.775102
... ... ...
162712 7F7389294115E9220A24B85275C74D18FDB99EEB0E14D7... 0.399047
162713 0BBD746C51DEAC678D11F36311B921D6896E4093DD2D96... -0.404789
162714 9807DA2C5AE0CAD796716CE294B7C2B934961C61D93F10... 0.088557
162715 B1FFD6BD0C720E70F89339D884134220B070056E256926... 0.246175
162716 59ADB7D6CCD4A96D5D78ADFA69D331F9929C1E1998457C... 0.618130
[162717 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 162717, vs. num we are initializing: 162717
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 162717
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=24.941711 | time=0.2s
INFO:birdwatch.matrix_factorization:epoch 80 0.11423240602016449
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08624144643545151
INFO:birdwatch.matrix_factorization:epoch 160 0.04354528710246086
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11331626772880554
INFO:birdwatch.matrix_factorization:epoch 100 0.11362311989068985
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08580733090639114
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.997875 | time=26.2s
INFO:birdwatch.matrix_factorization:epoch 120 0.1135471910238266
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08574097603559494
INFO:birdwatch.matrix_factorization:epoch 180 0.04341157525777817
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11314854770898819
INFO:birdwatch.matrix_factorization:epoch 140 0.1135365217924118
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08574177324771881
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 496867, Notes: 1319203
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:Num epochs: 146
INFO:birdwatch.matrix_factorization:epoch 146 0.11353592574596405
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08574138581752777
INFO:birdwatch.matrix_factorization:Global Intercept: 0.17063555121421814
INFO:birdwatch.scorer:MFMultiGroupScorer_1 First MF/stable init elapsed time: 85.73 secs (1.43 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFMultiGroupScorer_1
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 47.57325521545964
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 126.30901428350042
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.704073 | time=75.2s
INFO:birdwatch.matrix_factorization:epoch 0 0.37204861640930176
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3121606111526489
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.395800 | time=52.4s
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.72 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:epoch 200 0.043299153447151184
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11298008263111115
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.73 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.64 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.83 secs (0.01 mins)
INFO:birdwatch.matrix_factorization:epoch 40 0.11100354045629501
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08524340391159058
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=3.305933 | time=78.6s
INFO:birdwatch.matrix_factorization:epoch 220 0.04319792985916138
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11280490458011627
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.96 secs (0.58 mins)
INFO:birdwatch.scorer:MFMultiGroupScorer_1 Compute scored notes elapsed time: 49.19 secs (0.82 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.note_ratings:Total ratings: 6256420 post-tombstones and 1114 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 4941544, including 4941537 post-tombstones and 7 pre-tombstones.
INFO:birdwatch.matrix_factorization:epoch 240 0.04310733079910278
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11263182014226913
INFO:birdwatch.note_ratings:Total valid ratings: 561970
INFO:birdwatch.scorer:MFMultiGroupScorer_1 Compute valid ratings elapsed time: 8.10 secs (0.14 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFMultiGroupScorer_1 Helpfulness scores pre-harassment elapsed time: 0.78 secs (0.01 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=3.286150 | time=104.7s
INFO:birdwatch.helpfulness_scores:Unique Raters: 55432
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 127143
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 50203
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 44219
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 5396149
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 4469939
INFO:birdwatch.scorer:MFMultiGroupScorer_1 Filtering by helpfulness score elapsed time: 7.44 secs (0.12 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 2859553
1 256532
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 1353854
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 2874586, Num Unique Notes Rated: 146011, Num Unique Raters: 41160
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 2657541
1 217045
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.07550478573262376
INFO:birdwatch.matrix_factorization:Using pos weight: 12.244193600405445 with BCEWithLogitsLoss
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 41160, Notes: 146011
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 19.68746190355521
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 69.83931000971818
INFO:birdwatch.matrix_factorization:epoch 0 3.4441781044006348
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.542120337486267
INFO:birdwatch.matrix_factorization:epoch 20 0.6947866082191467
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.4026806056499481
INFO:birdwatch.matrix_factorization:epoch 260 0.043023109436035156
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1124739944934845
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.367031 | time=155.2s
INFO:birdwatch.matrix_factorization:epoch 40 0.4966541528701782
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3342677354812622
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=3.279499 | time=130.5s
INFO:birdwatch.matrix_factorization:epoch 20 0.11212554574012756
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08325662463903427
INFO:birdwatch.matrix_factorization:epoch 60 0.46825674176216125
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3246450424194336
INFO:birdwatch.matrix_factorization:epoch 60 0.1098654568195343
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08289977163076401
INFO:birdwatch.matrix_factorization:epoch 80 0.4643974304199219
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.32281479239463806
INFO:birdwatch.matrix_factorization:epoch 280 0.04294116422533989
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11232009530067444
INFO:birdwatch.matrix_factorization:epoch 100 0.46387386322021484
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.32255950570106506
INFO:birdwatch.matrix_factorization:Num epochs: 101
INFO:birdwatch.matrix_factorization:epoch 101 0.46387386322021484
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.32255950570106506
INFO:birdwatch.matrix_factorization:Global Intercept: -0.23407363891601562
INFO:birdwatch.scorer:MFMultiGroupScorer_1 Harassment tag consensus elapsed time: 39.94 secs (0.67 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFMultiGroupScorer_1 Helpfulness scores post-harassment elapsed time: 1.37 secs (0.02 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=3.276617 | time=156.9s
INFO:birdwatch.helpfulness_scores:Unique Raters: 55432
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 127143
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 45799
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 39815
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 5396149
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 3587397
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 39815, Notes: 227080
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 15.797943456050731
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 90.10164510862741
INFO:birdwatch.matrix_factorization:epoch 0 0.3791448175907135
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.31287574768066406
INFO:birdwatch.matrix_factorization:epoch 20 0.11126857995986938
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08050812780857086
INFO:birdwatch.matrix_factorization:epoch 300 0.042860426008701324
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11217564344406128
INFO:birdwatch.matrix_factorization:epoch 40 0.10951262712478638
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0819113552570343
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=3.275117 | time=182.9s
INFO:birdwatch.matrix_factorization:epoch 60 0.10821569710969925
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07919583469629288
INFO:birdwatch.matrix_factorization:epoch 80 0.10816728323698044
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07924497872591019
INFO:birdwatch.matrix_factorization:epoch 320 0.04278457909822464
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11203478276729584
INFO:birdwatch.matrix_factorization:epoch 100 0.10815171897411346
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07901245355606079
INFO:birdwatch.matrix_factorization:Num epochs: 103
INFO:birdwatch.matrix_factorization:epoch 103 0.10815156996250153
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07916077971458435
INFO:birdwatch.matrix_factorization:Global Intercept: 0.17339570820331573
INFO:birdwatch.constants:Final round MF elapsed time: 50.60 secs (0.84 mins)
INFO:birdwatch.mf_base_scorer:In MFMultiGroupScorer_1 prescoring, about to call diligence with 3587397 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 00003B703F86036C51F4F4B4C9F77B00C92D882421DA73... -0.470690
1 00018D8DDD8FE5AD262631A9CA08190AB95942067312FD... -0.097652
2 0001C21FD89AC65310D4D74174C0986CDF457DA24DADAB... 0.019454
3 0003B87251FE6860759A856C73472561F9A37C4813053E... -0.321227
4 0003E67BB62E658363186A00B13637CF1A58748C4E4ECE... 0.178776
... ... ...
39810 FFF10C79740909DEDBBF234382D89BF3F3D4750C5E983B... 0.231334
39811 FFF3E935633C6870DE7674D0681C5821BC408073C84A36... 0.103689
39812 FFF89590FF300D0348631F2F16AA908F663A888A3F82E0... 0.400786
39813 FFFBC05DB8408BB532985642C4DE00EC619B062CB60E2E... 0.312443
39814 FFFE8C4E72CFDBD164D87E0FDA30F8334EC8B6013F1238... 0.348604
[39815 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 39815, vs. num we are initializing: 39815
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 39815
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=17.491796 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=3.325250 | time=236.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=3.274230 | time=209.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.650938 | time=8.2s
INFO:birdwatch.matrix_factorization:epoch 340 0.042706988751888275
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11189758777618408
INFO:birdwatch.matrix_factorization:epoch 40 0.11096478998661041
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0851963683962822
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.228275 | time=16.3s
INFO:birdwatch.matrix_factorization:epoch 80 0.10979072749614716
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08270809054374695
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=3.160544 | time=24.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=3.273654 | time=235.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=3.140998 | time=33.2s
INFO:birdwatch.matrix_factorization:epoch 360 0.042632780969142914
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11176253110170364
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=3.132281 | time=41.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=3.127349 | time=49.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=3.273250 | time=261.7s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(1.6443, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=3.273239 | time=0.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=3.124120 | time=57.7s
INFO:birdwatch.matrix_factorization:epoch 380 0.04256343096494675
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11163689196109772
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=3.121939 | time=65.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=3.120432 | time=74.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.903910 | time=26.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=3.119295 | time=82.1s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(0.7297, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=3.119263 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=3.316339 | time=317.7s
INFO:birdwatch.matrix_factorization:epoch 400 0.04249825328588486
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11152413487434387
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.992558 | time=8.1s
INFO:birdwatch.matrix_factorization:Num epochs: 411
INFO:birdwatch.matrix_factorization:epoch 411 0.042470186948776245
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11146847903728485
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1539715677499771
INFO:birdwatch.scorer:MFGroupScorer_14 First MF/stable init elapsed time: 951.67 secs (15.86 mins)
INFO:birdwatch.mf_base_scorer:Performing rep-filtering for MFGroupScorer_14
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.981636 | time=16.1s
INFO:birdwatch.matrix_factorization:epoch 100 0.10977811366319656
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08255892246961594
INFO:birdwatch.matrix_factorization:Num epochs: 101
INFO:birdwatch.matrix_factorization:epoch 101 0.10977811366319656
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08255892246961594
INFO:birdwatch.matrix_factorization:epoch 60 0.1098351702094078
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0828741118311882
INFO:birdwatch.matrix_factorization:Global Intercept: 0.17136713862419128
INFO:birdwatch.constants:Final round MF elapsed time: 641.61 secs (10.69 mins)
INFO:birdwatch.mf_base_scorer:In MFExpansionPlusScorer prescoring, about to call diligence with 62806087 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.980798 | time=24.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.897679 | time=52.2s
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.reputation_matrix_factorization:epoch=100 | loss=1.980763 | time=26.8s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.475615 | time=0.0s
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.68 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.74 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.70 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.391722 | time=4.7s
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.67 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.73 secs (0.01 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.390697 | time=9.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.390654 | time=11.7s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(1.8796, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 3.1193, 1.9808, 0.3907
INFO:birdwatch.scorer:MFMultiGroupScorer_1 Low Diligence MF elapsed time: 125.16 secs (2.09 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.62 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.77 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.71 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.61 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.896501 | time=78.2s
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.71 secs (0.01 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=100 | loss=1.896465 | time=86.7s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.250473 | time=0.1s
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.69 secs (0.58 mins)
INFO:birdwatch.scorer:MFGroupScorer_14 Compute scored notes elapsed time: 55.50 secs (0.93 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in get_ratings_before_note_status_and_public_tsv, at line 68: ratingsWithNoteLabelInfo = ratings[
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.175413 | time=15.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=3.313438 | time=394.8s
INFO:birdwatch.note_ratings:Total ratings: 11421850 post-tombstones and 4020 pre-tombstones
INFO:birdwatch.note_ratings:Total ratings created before statuses: 9299407, including 9299136 post-tombstones and 271 pre-tombstones.
INFO:birdwatch.note_ratings:Total valid ratings: 441611
INFO:birdwatch.scorer:MFGroupScorer_14 Compute valid ratings elapsed time: 14.82 secs (0.25 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_14 Helpfulness scores pre-harassment elapsed time: 1.03 secs (0.02 mins)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.58 secs (0.58 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.174604 | time=30.5s
INFO:birdwatch.helpfulness_scores:Unique Raters: 60009
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 137625
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 39587
INFO:birdwatch.reputation_matrix_factorization:epoch=070 | loss=0.174574 | time=35.5s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(3.6029, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 3.2732, 1.8965, 0.1746
INFO:birdwatch.scorer:MFTopicScorer_GazaConflict Low Diligence MF elapsed time: 396.10 secs (6.60 mins)
INFO:birdwatch.constants:MFMultiGroupScorer_1: Compute tag thresholds for percentiles elapsed time: 8.88 secs (0.15 mins)
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 38298
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 10521432
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 8028229
INFO:birdwatch.scorer:MFGroupScorer_14 Filtering by helpfulness score elapsed time: 13.99 secs (0.23 mins)
INFO:birdwatch.tag_consensus:-------------------Training for tag notHelpfulSpamHarassmentOrAbuse-------------------
INFO:birdwatch.matrix_factorization:epoch 80 0.10975932329893112
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08267231285572052
INFO:birdwatch.tag_consensus:Pre-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 4805847
1 278264
dtype: int64
INFO:birdwatch.tag_consensus:Number of rows with no tag label 2944118
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 000011269AD6F327AED0F4086A732B4052F9D28E8791E1... -0.164351
1 00003B703F86036C51F4F4B4C9F77B00C92D882421DA73... -0.453246
2 000045A5FA0CF004F68CBF2913506C37D540CF48522D33... 0.710366
3 00005300B9017670433392BF6767238D54E058EC25D5C5... -0.275141
4 00007B885907790E492F8C9A31F1AFC20831279328C263... 0.466115
... ... ...
496784 FFFFAB2FDBC1968F4CFE97A86D88963D702B636365B6CD... 0.040002
496785 FFFFBBAB3C66ABB4DBC2A3B486C3C673345C89B5858465... 0.290216
496786 FFFFC46B8555A97065DB39F7D600C8BB643F7F3EBD810E... 0.061891
496787 FFFFC819886B2F837503D840D59EE8321A835AAF2B5C1E... -0.215695
496788 FFFFFE8909485374E33854B934713713CAC93CDB50C9D0... 0.575421
[496789 rows x 2 columns]
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 4694922, Num Unique Notes Rated: 249596, Num Unique Raters: 36766
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.tag_consensus:Post-filtering tag label breakdown notHelpfulSpamHarassmentOrAbuseLabel
0 4453472
1 241450
dtype: int64
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.04 secs (0.00 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.05 secs (0.00 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.04 secs (0.00 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.03 secs (0.00 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.tag_consensus:Number of rows with no tag label 0
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 496789, vs. num we are initializing: 496789
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.04 secs (0.00 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.tag_consensus:notHelpfulSpamHarassmentOrAbuse Positive Rate: 0.05142790444654884
INFO:birdwatch.matrix_factorization:Using pos weight: 18.44469662455995 with BCEWithLogitsLoss
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 496789
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=15.858751 | time=0.7s
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 2.11 secs (0.04 mins)
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 36766, Notes: 249596
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :2.0
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 18.81008509751759
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 127.69738345210249
INFO:birdwatch.matrix_factorization:epoch 0 3.191194534301758
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 1.328877329826355
INFO:birdwatch.matrix_factorization:epoch 20 0.6886484026908875
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.3510032594203949
INFO:birdwatch.matrix_factorization:epoch 40 0.4418139159679413
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2804913818836212
INFO:birdwatch.constants:MFTopicScorer_GazaConflict: Compute tag thresholds for percentiles elapsed time: 24.59 secs (0.41 mins)
INFO:birdwatch.matrix_factorization:epoch 60 0.4074273705482483
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.26774466037750244
INFO:birdwatch.matrix_factorization:epoch 80 0.4025745987892151
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.26587173342704773
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=3.312109 | time=471.4s
INFO:birdwatch.matrix_factorization:epoch 100 0.4018949866294861
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2655237317085266
INFO:birdwatch.matrix_factorization:Num epochs: 113
INFO:birdwatch.matrix_factorization:epoch 113 0.4018162190914154
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.2655215263366699
INFO:birdwatch.matrix_factorization:Global Intercept: -0.25328749418258667
INFO:birdwatch.scorer:MFGroupScorer_14 Harassment tag consensus elapsed time: 65.76 secs (1.10 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:31: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoredNotes.loc[:, c.noteCountKey] = 1
JOIN ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 109: authorCounts.join(
PandasTypeError: Output mismatch on index: result=object expected=<class 'numpy.int64'> (allowed)
PandasTypeError: Output mismatch on crhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on crnhBool: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on noteCount: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingAgreesWithNoteStatus: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on ratingCount: result=float64 expected=int64 (allowed)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py, in compute_general_helpfulness_scores, at line 167: helpfulnessScores = helpfulnessScores.merge(
PandasTypeError: Output mismatch on totalHelpfulHarassmentPenalty: result=float64 expected=int64 (allowed)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:173: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)
INFO:birdwatch.scorer:MFGroupScorer_14 Helpfulness scores post-harassment elapsed time: 2.28 secs (0.04 mins)
INFO:birdwatch.helpfulness_scores:Unique Raters: 60009
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 137625
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 35909
INFO:birdwatch.matrix_factorization:epoch 100 0.1097467839717865
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0825260654091835
INFO:birdwatch.matrix_factorization:Num epochs: 101
INFO:birdwatch.matrix_factorization:epoch 101 0.1097467839717865
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0825260654091835
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1713782697916031
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 34620
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 10521432
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 6020624
INFO:birdwatch.constants:Final round MF elapsed time: 653.00 secs (10.88 mins)
INFO:birdwatch.mf_base_scorer:In MFExpansionScorer prescoring, about to call diligence with 62758781 final round ratings.
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 34620, Notes: 397801
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.02
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 15.134763361580287
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 173.9059503177354
INFO:birdwatch.matrix_factorization:epoch 0 0.1634453982114792
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.14385278522968292
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.718604 | time=86.9s
INFO:birdwatch.matrix_factorization:epoch 20 0.12274827063083649
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09218326210975647
INFO:birdwatch.matrix_factorization:epoch 40 0.11930923163890839
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08972907811403275
INFO:birdwatch.matrix_factorization:epoch 60 0.11864250898361206
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08917440474033356
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=3.311362 | time=546.6s
INFO:birdwatch.matrix_factorization:epoch 80 0.11847145110368729
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08894865959882736
INFO:birdwatch.matrix_factorization:epoch 100 0.11840848624706268
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08882999420166016
INFO:birdwatch.matrix_factorization:Num epochs: 116
INFO:birdwatch.matrix_factorization:epoch 116 0.11838555335998535
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08875240385532379
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 000011269AD6F327AED0F4086A732B4052F9D28E8791E1... -0.165260
1 00003B703F86036C51F4F4B4C9F77B00C92D882421DA73... -0.453323
2 000045A5FA0CF004F68CBF2913506C37D540CF48522D33... 0.710605
3 00005300B9017670433392BF6767238D54E058EC25D5C5... -0.274709
4 00007B885907790E492F8C9A31F1AFC20831279328C263... 0.464849
... ... ...
496862 FFFFAB2FDBC1968F4CFE97A86D88963D702B636365B6CD... 0.038655
496863 FFFFBBAB3C66ABB4DBC2A3B486C3C673345C89B5858465... 0.292151
496864 FFFFC46B8555A97065DB39F7D600C8BB643F7F3EBD810E... 0.062043
496865 FFFFC819886B2F837503D840D59EE8321A835AAF2B5C1E... -0.215246
496866 FFFFFE8909485374E33854B934713713CAC93CDB50C9D0... 0.576884
[496867 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 496867, vs. num we are initializing: 496867
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 496867
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=15.863570 | time=0.8s
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 34620, Notes: 397801
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:learning rate set to :0.02
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:epoch 0 0.08779740333557129
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.30733391642570496
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.385694 | time=172.9s
INFO:birdwatch.matrix_factorization:epoch 20 0.05155905708670616
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.12256365269422531
INFO:birdwatch.matrix_factorization:epoch 40 0.04741515964269638
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11213576048612595
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=3.310950 | time=622.4s
INFO:birdwatch.matrix_factorization:epoch 60 0.046249330043792725
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11291010677814484
INFO:birdwatch.matrix_factorization:epoch 80 0.045835163444280624
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11310164630413055
INFO:birdwatch.matrix_factorization:epoch 100 0.04563520848751068
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1133788526058197
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.719646 | time=86.8s
INFO:birdwatch.matrix_factorization:epoch 120 0.04551506042480469
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11373230069875717
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=3.344915 | time=257.9s
INFO:birdwatch.matrix_factorization:epoch 140 0.04542715847492218
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11400537192821503
INFO:birdwatch.matrix_factorization:epoch 160 0.045356348156929016
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11423291265964508
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=3.310689 | time=699.3s
INFO:birdwatch.matrix_factorization:Num epochs: 168
INFO:birdwatch.matrix_factorization:epoch 168 0.045335497707128525
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11429942399263382
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1642647087574005
INFO:birdwatch.constants:Final round MF elapsed time: 219.46 secs (3.66 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_14 prescoring, about to call diligence with 6020624 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
None,
raterInitState:
raterParticipantId internalRaterFactor1
0 0002725E706CF18C040E21F30CE2D39994513C3BB8CF58... 0.114668
1 00032CF270BEF4007D6B24E33135CD078C72B0965FCD8D... -0.863593
2 00054DA8CA53842EE3042D2E203830D7F023E91EC47259... -0.696787
3 000818E860FC3D0209D9E2493FC76B78311313A011891F... -0.411655
4 000A760155A8E91769E9D71F4DE644707CA31B077F0FDC... -0.862553
... ... ...
34615 FFFD9C3BC7BB3A78D72C67E34A7BDEFAAFFC485AAE049D... 0.306456
34616 FFFDDE9AE1DFCB76019D1A523D5CC586BB1AB22B878801... 0.374651
34617 FFFF4DD649728988010BBC2B953A59797EA70028B58EA8... -0.651221
34618 FFFFC819886B2F837503D840D59EE8321A835AAF2B5C1E... -0.271115
34619 FFFFFE8909485374E33854B934713713CAC93CDB50C9D0... 0.711589
[34620 rows x 2 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 34620, vs. num we are initializing: 34620
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 34620
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalRaterReputation
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteFactor1
INFO:birdwatch.reputation_matrix_factorization:Not initializing internalNoteIntercept
INFO:birdwatch.reputation_matrix_factorization:Reputation Matrix Factorization: rater reputation frozen
INFO:birdwatch.reputation_matrix_factorization:Round 1:
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=16.595818 | time=0.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=3.578781 | time=14.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.181258 | time=28.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=3.385156 | time=172.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=3.115875 | time=42.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=3.336308 | time=344.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=3.096240 | time=57.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=3.310513 | time=777.9s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(1.0976, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=3.310509 | time=0.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=3.087276 | time=71.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=3.082028 | time=86.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=3.078642 | time=100.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=3.076359 | time=114.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=3.344345 | time=257.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=3.074747 | time=129.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=3.333598 | time=431.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=3.073623 | time=143.3s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(0.4285, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=3.073592 | time=0.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.072717 | time=75.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=1.920358 | time=13.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=1.908950 | time=27.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=1.908123 | time=41.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=100 | loss=1.908097 | time=45.8s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.440956 | time=0.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.369864 | time=8.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.368972 | time=16.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.368935 | time=20.7s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(1.5646, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 3.0736, 1.9081, 0.3689
INFO:birdwatch.scorer:MFGroupScorer_14 Low Diligence MF elapsed time: 217.86 secs (3.63 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=3.335839 | time=342.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.062488 | time=150.6s
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.65 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.77 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.74 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=3.332457 | time=518.9s
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.73 secs (0.01 mins)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.78 secs (0.58 mins)
INFO:birdwatch.constants:MFGroupScorer_14: Compute tag thresholds for percentiles elapsed time: 18.64 secs (0.31 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.061631 | time=225.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.061631 | time=225.7s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=3.333156 | time=427.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.339348 | time=0.7s
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=3.331867 | time=606.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.254511 | time=51.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=3.332019 | time=512.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.253524 | time=102.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=3.331526 | time=692.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.253484 | time=128.6s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(2.5736, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 3.3105, 2.0616, 0.2535
INFO:birdwatch.scorer:MFCoreScorer Low Diligence MF elapsed time: 1204.16 secs (20.07 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=3.331436 | time=595.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=3.331315 | time=778.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=3.331087 | time=679.1s
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.62 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.16 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.87 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.04 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.72 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.85 secs (0.01 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=3.331172 | time=861.8s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(1.1620, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=3.331169 | time=0.7s
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 35.41 secs (0.59 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=3.330859 | time=761.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.091711 | time=81.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=300 | loss=3.330716 | time=843.0s
INFO:birdwatch.reputation_matrix_factorization:After round 1, global bias: Parameter containing:
tensor(1.1645, requires_grad=True)
INFO:birdwatch.reputation_matrix_factorization:
Round 2: learn rater rep (and everything else), freeze note intercept
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=3.330712 | time=0.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.081404 | time=162.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.090706 | time=78.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.080528 | time=242.5s
INFO:birdwatch.constants:MFCoreScorer: Compute tag thresholds for percentiles elapsed time: 220.11 secs (3.67 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=100 | loss=2.080499 | time=269.5s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.336091 | time=0.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.080357 | time=157.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.249141 | time=55.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.079465 | time=235.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.248113 | time=110.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=100 | loss=2.079435 | time=261.8s
INFO:birdwatch.reputation_matrix_factorization:
Round 3: fit intercepts and global intercept with everything else frozen
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.335744 | time=0.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.248072 | time=137.8s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(2.6540, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 3.3312, 2.0805, 0.2481
INFO:birdwatch.scorer:MFExpansionPlusScorer Low Diligence MF elapsed time: 1358.96 secs (22.65 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.249018 | time=58.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.247993 | time=117.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.247952 | time=147.1s
INFO:birdwatch.reputation_matrix_factorization:After round 3, global bias: Parameter containing:
tensor(2.6566, requires_grad=True)
INFO:birdwatch.diligence_model:Low diligence training loss: 3.3307, 2.0794, 0.2480
INFO:birdwatch.scorer:MFExpansionScorer Low Diligence MF elapsed time: 1339.42 secs (22.32 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.56 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.13 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.76 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.59 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.54 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.66 secs (0.01 mins)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 31.31 secs (0.52 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.55 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.12 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.75 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.03 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.00 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.55 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.71 secs (0.01 mins)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 34.29 secs (0.57 mins)
INFO:birdwatch.constants:MFExpansionPlusScorer: Compute tag thresholds for percentiles elapsed time: 213.45 secs (3.56 mins)
INFO:birdwatch.constants:MFExpansionScorer: Compute tag thresholds for percentiles elapsed time: 215.83 secs (3.60 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in _prescore_notes_and_users, at line 887: raterModelOutput = raterParams.merge(
PandasTypeError: Output mismatch on totalRatingsMadeByRater: result=float64 expected=int64 (allowed)
INFO:birdwatch.run_scoring:Got model results from all scorers.
INFO:birdwatch.run_scoring:----
Completed individual scorers. Ran in parallel: True. Succeeded in 5830.41 seconds.
Individual scorers: (name, runtime): [('MFCoreScorer', '80.32 mins'), ('MFExpansionScorer', '91.53 mins'), ('MFExpansionPlusScorer', '89.27 mins'), ('ReputationScorer', '35.18 mins'), ('MFGroupScorer_13', '32.03 mins'), ('MFGroupScorer_12', '2.85 mins'), ('MFGroupScorer_11', '3.47 mins'), ('MFGroupScorer_10', '3.10 mins'), ('MFGroupScorer_9', '8.77 mins'), ('MFGroupScorer_8', '2.76 mins'), ('MFGroupScorer_7', '3.75 mins'), ('MFGroupScorer_6', '7.72 mins'), ('MFGroupScorer_5', '2.58 mins'), ('MFGroupScorer_4', '4.10 mins'), ('MFGroupScorer_3', '8.36 mins'), ('MFGroupScorer_2', '3.25 mins'), ('MFGroupScorer_1', '8.34 mins'), ('MFGroupScorer_14', '28.63 mins'), ('MFTopicScorer_Unassigned', '0.19 mins'), ('MFTopicScorer_UkraineConflict', '3.98 mins'), ('MFTopicScorer_GazaConflict', '11.31 mins'), ('MFTopicScorer_MessiRonaldo', '0.68 mins'), ('MFMultiGroupScorer_1', '8.34 mins')]
----
/home/ubuntu/communitynotes/sourcecode/scoring/pandas_utils.py:364: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.
result = self._origConcat(*args, **kwargs)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/run_scoring.py, in combine_prescorer_scorer_results, at line 484: prescoringNoteModelOutput = pd.concat(
PandasTypeError: Type expectation mismatch on noteId: found=object expected=int64
PandasTypeError: DataFrame concat on noteId: output=object inputs=[dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('O'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64')] (allowed)
PandasTypeError: DataFrame concat on internalNoteIntercept: output=float32 inputs=[dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('O'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32')] (allowed)
PandasTypeError: DataFrame concat on internalNoteFactor1: output=float32 inputs=[dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('O'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32')] (allowed)
PandasTypeError: DataFrame concat on lowDiligenceNoteIntercept: output=float32 inputs=[dtype('float32'), dtype('float32'), dtype('float32'), dtype('float64'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('O'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32')] (allowed)
PandasTypeError: DataFrame concat on lowDiligenceNoteFactor1: output=float32 inputs=[dtype('float32'), dtype('float32'), dtype('float32'), dtype('float64'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('O'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32')] (allowed)
PandasTypeError: Type expectation mismatch on noteId: found=object expected=int64
/home/ubuntu/communitynotes/sourcecode/scoring/pandas_utils.py:364: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.
result = self._origConcat(*args, **kwargs)
/home/ubuntu/communitynotes/sourcecode/scoring/pandas_utils.py:364: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.
result = self._origConcat(*args, **kwargs)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/run_scoring.py, in combine_prescorer_scorer_results, at line 505: raterParamsUnfilteredMultiScorers = pd.concat(
PandasTypeError: DataFrame concat on internalRaterIntercept: output=float32 inputs=[dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('O'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32')] (allowed)
PandasTypeError: DataFrame concat on internalRaterFactor1: output=float32 inputs=[dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('O'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32')] (allowed)
PandasTypeError: DataFrame concat on crhCrnhRatioDifference: output=float64 inputs=[dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('O'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64')] (allowed)
PandasTypeError: DataFrame concat on meanNoteScore: output=float64 inputs=[dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('O'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64')] (allowed)
PandasTypeError: DataFrame concat on raterAgreeRatio: output=float64 inputs=[dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('O'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64')] (allowed)
PandasTypeError: DataFrame concat on aboveHelpfulnessThreshold: output=object inputs=[dtype('bool'), dtype('bool'), dtype('bool'), dtype('float64'), dtype('bool'), dtype('bool'), dtype('bool'), dtype('bool'), dtype('bool'), dtype('bool'), dtype('bool'), dtype('bool'), dtype('bool'), dtype('bool'), dtype('bool'), dtype('bool'), dtype('bool'), dtype('bool'), dtype('O'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('bool')] (allowed)
PandasTypeError: DataFrame concat on internalRaterReputation: output=float32 inputs=[dtype('float64'), dtype('float64'), dtype('float64'), dtype('float32'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64')] (allowed)
PandasTypeError: DataFrame concat on lowDiligenceRaterIntercept: output=float32 inputs=[dtype('float32'), dtype('float32'), dtype('float32'), dtype('float64'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('O'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32')] (allowed)
PandasTypeError: DataFrame concat on lowDiligenceRaterFactor1: output=float32 inputs=[dtype('float32'), dtype('float32'), dtype('float32'), dtype('float64'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('O'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32')] (allowed)
PandasTypeError: DataFrame concat on lowDiligenceRaterReputation: output=float32 inputs=[dtype('float32'), dtype('float32'), dtype('float32'), dtype('float64'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('O'), dtype('float32'), dtype('float32'), dtype('float32'), dtype('float32')] (allowed)
PandasTypeError: DataFrame concat on incorrectTagRatingsMadeByRater: output=Int64 inputs=[Int64Dtype(), Int64Dtype(), Int64Dtype(), dtype('float64'), Int64Dtype(), Int64Dtype(), Int64Dtype(), Int64Dtype(), Int64Dtype(), Int64Dtype(), Int64Dtype(), Int64Dtype(), Int64Dtype(), Int64Dtype(), Int64Dtype(), Int64Dtype(), Int64Dtype(), Int64Dtype(), Int64Dtype(), Int64Dtype(), Int8Dtype(), Int64Dtype()] (allowed)
INFO:birdwatch.run_scoring:notes total RAM: 125118992 bytes (0.125 GB)
column dtype RAM
0 noteId int64 12670240
1 noteAuthorParticipantId object 12670240
2 createdAtMillis int64 12670240
3 tweetId object 12670240
4 classification object 12670240
5 believable category 1583904
6 harmful category 1583904
7 validationDifficulty category 1583904
8 misleadingOther Int8 3167560
9 misleadingFactualError Int8 3167560
10 misleadingManipulatedMedia Int8 3167560
11 misleadingOutdatedInformation Int8 3167560
12 misleadingMissingImportantContext Int8 3167560
13 misleadingUnverifiedClaimAsFact Int8 3167560
14 misleadingSatire Int8 3167560
15 notMisleadingOther Int8 3167560
16 notMisleadingFactuallyCorrect Int8 3167560
17 notMisleadingOutdatedButNotWhenWritten Int8 3167560
18 notMisleadingClearlySatire Int8 3167560
19 notMisleadingPersonalOpinion Int8 3167560
20 trustworthySources Int8 3167560
21 summary object 12670240
22 isMediaNote Int8 3167560
INFO:birdwatch.run_scoring:ratings total RAM: 13424916000 bytes (13.425 GB)
column dtype RAM
0 noteId int64 967561504
1 raterParticipantId object 967561504
2 createdAtMillis int64 967561504
3 version Int8 241890376
4 agree Int8 241890376
5 disagree Int8 241890376
6 helpful Int8 241890376
7 notHelpful Int8 241890376
8 helpfulnessLevel category 120945320
9 helpfulOther Int8 241890376
10 helpfulInformative Int8 241890376
11 helpfulClear Int8 241890376
12 helpfulEmpathetic Int8 241890376
13 helpfulGoodSources Int8 241890376
14 helpfulUniqueContext Int8 241890376
15 helpfulAddressesClaim Int8 241890376
16 helpfulImportantContext Int8 241890376
17 helpfulUnbiasedLanguage Int8 241890376
18 notHelpfulOther Int8 241890376
19 notHelpfulIncorrect Int8 241890376
20 notHelpfulSourcesMissingOrUnreliable Int8 241890376
21 notHelpfulOpinionSpeculationOrBias Int8 241890376
22 notHelpfulMissingKeyPoints Int8 241890376
23 notHelpfulOutdated Int8 241890376
24 notHelpfulHardToUnderstand Int8 241890376
25 notHelpfulArgumentativeOrBiased Int8 241890376
26 notHelpfulOffTopic Int8 241890376
27 notHelpfulSpamHarassmentOrAbuse Int8 241890376
28 notHelpfulIrrelevantSources Int8 241890376
29 notHelpfulOpinionSpeculation Int8 241890376
30 notHelpfulNoteNotNeeded Int8 241890376
31 ratedOnTweetId int64 967561504
32 helpfulNum float64 967561504
33 postSelectionValue float64 967561504
34 postSelectionValue_note_author float64 967561504
INFO:birdwatch.run_scoring:noteStatusHistory total RAM: 230089929 bytes (0.230 GB)
column dtype RAM
0 noteId int64 14269032
1 noteAuthorParticipantId object 14269032
2 createdAtMillis float64 14269032
3 timestampMillisOfFirstNonNMRStatus float64 14269032
4 firstNonNMRStatus category 1783753
5 timestampMillisOfCurrentStatus float64 14269032
6 currentStatus category 1783761
7 timestampMillisOfLatestNonNMRStatus float64 14269032
8 mostRecentNonNMRStatus category 1783753
9 timestampMillisOfStatusLock float64 14269032
10 lockedStatus category 1783761
11 timestampMillisOfRetroLock float64 14269032
12 currentCoreStatus category 1783761
13 currentExpansionStatus category 1783761
14 currentGroupStatus category 1783761
15 currentDecidedBy category 1784377
16 currentModelingGroup float64 14269032
17 timestampMillisOfMostRecentStatusChange float64 14269032
18 timestampMillisOfNmrDueToMinStableCrhTime float64 14269032
19 currentMultiGroupStatus category 1783761
20 currentModelingMultiGroup float64 14269032
21 timestampMinuteOfFinalScoringOutput float64 14269032
22 timestampMillisOfFirstNmrDueToMinStableCrhTime float64 14269032
23 classification object 14269032
INFO:birdwatch.run_scoring:userEnrollment total RAM: 60314631 bytes (0.060 GB)
column dtype RAM
0 participantId object 8465208
1 enrollmentState object 8465208
2 successfulRatingNeededToEarnIn int64 8465208
3 timestampOfLastStateChange int64 8465208
4 timestampOfLastEarnOut float64 8465208
5 modelingPopulation category 1058175
6 modelingGroup float64 8465208
7 numberOfTimesEarnedOut int64 8465208
INFO:birdwatch.run_scoring:prescoringNoteModelOutput total RAM: 293538924 bytes (0.294 GB)
column dtype RAM
0 noteId object 65230872
1 internalNoteIntercept float32 32615436
2 internalNoteFactor1 float32 32615436
3 scorerName object 65230872
4 lowDiligenceNoteIntercept float32 32615436
5 lowDiligenceNoteFactor1 float32 32615436
6 lowDiligenceNoteInterceptRound2 float32 32615436
INFO:birdwatch.run_scoring:prescoringRaterModelOutput total RAM: 407235030 bytes (0.407 GB)
column dtype RAM
0 raterParticipantId object 32256240
1 internalRaterIntercept float32 16128120
2 internalRaterFactor1 float32 16128120
3 crhCrnhRatioDifference float64 32256240
4 meanNoteScore float64 32256240
5 raterAgreeRatio float64 32256240
6 aboveHelpfulnessThreshold object 32256240
7 scorerName object 32256240
8 internalRaterReputation float32 16128120
9 lowDiligenceRaterIntercept float32 16128120
10 lowDiligenceRaterFactor1 float32 16128120
11 lowDiligenceRaterReputation float32 16128120
12 lowDiligenceRaterInterceptRound2 float32 16128120
13 incorrectTagRatingsMadeByRater Int64 36288270
14 totalRatingsMadeByRater float64 32256240
15 postSelectionValue float64 32256240
INFO:birdwatch.constants:Logging Prescoring Results RAM usage (before conversion) elapsed time: 0.06 secs (0.00 mins)
INFO:birdwatch.run_scoring:notes total RAM: 125118992 bytes (0.125 GB)
column dtype RAM
0 noteId int64 12670240
1 noteAuthorParticipantId object 12670240
2 createdAtMillis int64 12670240
3 tweetId object 12670240
4 classification object 12670240
5 believable category 1583904
6 harmful category 1583904
7 validationDifficulty category 1583904
8 misleadingOther Int8 3167560
9 misleadingFactualError Int8 3167560
10 misleadingManipulatedMedia Int8 3167560
11 misleadingOutdatedInformation Int8 3167560
12 misleadingMissingImportantContext Int8 3167560
13 misleadingUnverifiedClaimAsFact Int8 3167560
14 misleadingSatire Int8 3167560
15 notMisleadingOther Int8 3167560
16 notMisleadingFactuallyCorrect Int8 3167560
17 notMisleadingOutdatedButNotWhenWritten Int8 3167560
18 notMisleadingClearlySatire Int8 3167560
19 notMisleadingPersonalOpinion Int8 3167560
20 trustworthySources Int8 3167560
21 summary object 12670240
22 isMediaNote Int8 3167560
INFO:birdwatch.run_scoring:ratings total RAM: 13424916000 bytes (13.425 GB)
column dtype RAM
0 noteId int64 967561504
1 raterParticipantId object 967561504
2 createdAtMillis int64 967561504
3 version Int8 241890376
4 agree Int8 241890376
5 disagree Int8 241890376
6 helpful Int8 241890376
7 notHelpful Int8 241890376
8 helpfulnessLevel category 120945320
9 helpfulOther Int8 241890376
10 helpfulInformative Int8 241890376
11 helpfulClear Int8 241890376
12 helpfulEmpathetic Int8 241890376
13 helpfulGoodSources Int8 241890376
14 helpfulUniqueContext Int8 241890376
15 helpfulAddressesClaim Int8 241890376
16 helpfulImportantContext Int8 241890376
17 helpfulUnbiasedLanguage Int8 241890376
18 notHelpfulOther Int8 241890376
19 notHelpfulIncorrect Int8 241890376
20 notHelpfulSourcesMissingOrUnreliable Int8 241890376
21 notHelpfulOpinionSpeculationOrBias Int8 241890376
22 notHelpfulMissingKeyPoints Int8 241890376
23 notHelpfulOutdated Int8 241890376
24 notHelpfulHardToUnderstand Int8 241890376
25 notHelpfulArgumentativeOrBiased Int8 241890376
26 notHelpfulOffTopic Int8 241890376
27 notHelpfulSpamHarassmentOrAbuse Int8 241890376
28 notHelpfulIrrelevantSources Int8 241890376
29 notHelpfulOpinionSpeculation Int8 241890376
30 notHelpfulNoteNotNeeded Int8 241890376
31 ratedOnTweetId int64 967561504
32 helpfulNum float64 967561504
33 postSelectionValue float64 967561504
34 postSelectionValue_note_author float64 967561504
INFO:birdwatch.run_scoring:noteStatusHistory total RAM: 230089929 bytes (0.230 GB)
column dtype RAM
0 noteId int64 14269032
1 noteAuthorParticipantId object 14269032
2 createdAtMillis float64 14269032
3 timestampMillisOfFirstNonNMRStatus float64 14269032
4 firstNonNMRStatus category 1783753
5 timestampMillisOfCurrentStatus float64 14269032
6 currentStatus category 1783761
7 timestampMillisOfLatestNonNMRStatus float64 14269032
8 mostRecentNonNMRStatus category 1783753
9 timestampMillisOfStatusLock float64 14269032
10 lockedStatus category 1783761
11 timestampMillisOfRetroLock float64 14269032
12 currentCoreStatus category 1783761
13 currentExpansionStatus category 1783761
14 currentGroupStatus category 1783761
15 currentDecidedBy category 1784377
16 currentModelingGroup float64 14269032
17 timestampMillisOfMostRecentStatusChange float64 14269032
18 timestampMillisOfNmrDueToMinStableCrhTime float64 14269032
19 currentMultiGroupStatus category 1783761
20 currentModelingMultiGroup float64 14269032
21 timestampMinuteOfFinalScoringOutput float64 14269032
22 timestampMillisOfFirstNmrDueToMinStableCrhTime float64 14269032
23 classification object 14269032
INFO:birdwatch.run_scoring:userEnrollment total RAM: 60314631 bytes (0.060 GB)
column dtype RAM
0 participantId object 8465208
1 enrollmentState object 8465208
2 successfulRatingNeededToEarnIn int64 8465208
3 timestampOfLastStateChange int64 8465208
4 timestampOfLastEarnOut float64 8465208
5 modelingPopulation category 1058175
6 modelingGroup float64 8465208
7 numberOfTimesEarnedOut int64 8465208
INFO:birdwatch.run_scoring:prescoringNoteModelOutput total RAM: 293538924 bytes (0.294 GB)
column dtype RAM
0 noteId object 65230872
1 internalNoteIntercept float32 32615436
2 internalNoteFactor1 float32 32615436
3 scorerName object 65230872
4 lowDiligenceNoteIntercept float32 32615436
5 lowDiligenceNoteFactor1 float32 32615436
6 lowDiligenceNoteInterceptRound2 float32 32615436
INFO:birdwatch.run_scoring:prescoringRaterModelOutput total RAM: 407235030 bytes (0.407 GB)
column dtype RAM
0 raterParticipantId object 32256240
1 internalRaterIntercept float32 16128120
2 internalRaterFactor1 float32 16128120
3 crhCrnhRatioDifference float64 32256240
4 meanNoteScore float64 32256240
5 raterAgreeRatio float64 32256240
6 aboveHelpfulnessThreshold object 32256240
7 scorerName object 32256240
8 internalRaterReputation float32 16128120
9 lowDiligenceRaterIntercept float32 16128120
10 lowDiligenceRaterFactor1 float32 16128120
11 lowDiligenceRaterReputation float32 16128120
12 lowDiligenceRaterInterceptRound2 float32 16128120
13 incorrectTagRatingsMadeByRater Int64 36288270
14 totalRatingsMadeByRater float64 32256240
15 postSelectionValue float64 32256240
INFO:birdwatch.constants:Logging Prescoring Results RAM usage (after conversion) elapsed time: 0.05 secs (0.00 mins)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/run_scoring.py, in run_prescoring, at line 1187: prescoringRaterModelOutput = pd.concat(
PandasTypeError: DataFrame concat on postSelectionValue: output=float64 inputs=[dtype('float64'), dtype('int64')] (allowed)
INFO:birdwatch.run_scoring:prescoringRaterModelOutput total RAM: 407339161 bytes (0.407 GB)
column dtype RAM
0 raterParticipantId object 32264488
1 internalRaterIntercept float32 16132244
2 internalRaterFactor1 float32 16132244
3 crhCrnhRatioDifference float64 32264488
4 meanNoteScore float64 32264488
5 raterAgreeRatio float64 32264488
6 aboveHelpfulnessThreshold object 32264488
7 scorerName object 32264488
8 internalRaterReputation float32 16132244
9 lowDiligenceRaterIntercept float32 16132244
10 lowDiligenceRaterFactor1 float32 16132244
11 lowDiligenceRaterReputation float32 16132244
12 lowDiligenceRaterInterceptRound2 float32 16132244
13 incorrectTagRatingsMadeByRater Int64 36297549
14 totalRatingsMadeByRater float64 32264488
15 postSelectionValue float64 32264488
INFO:birdwatch.constants:Logging Prescoring Results RAM usage (after concatenation) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.run_scoring:Initial value of OPENBLAS_NUM_THREADS: None
INFO:birdwatch.run_scoring:New value of OPENBLAS_NUM_THREADS: 1
INFO:birdwatch.pflip_model:seeding pflip: 0
INFO:birdwatch.pflip_model:total ratings considered for pflip model: 120945188
INFO:birdwatch.pflip_model:total ratings before initial note status for pflip model: 99035137
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/pflip_model.py, in _get_recent_notes, at line 303: noteStatusHistory[[c.noteIdKey, c.createdAtMillisKey]].merge(
PandasTypeError: Input mismatch on createdAtMillis: left=float64 vs right=int64 (UNALLOWED)
PandasTypeError: Merge key mismatch on createdAtMillis: left=float64 vs right=int64 (UNALLOWED)
INFO:birdwatch.pflip_model:labels before ScoringDriftGuard:
LABEL
CRH 126611
FLIP 51470
Name: count, dtype: int64
INFO:birdwatch.pflip_model:labels after ScoringDriftGuard:
LABEL
CRH 107480
FLIP 51470
Name: count, dtype: int64
INFO:birdwatch.pflip_model:labels after restricting to recent notes:
LABEL
CRH 76098
FLIP 34036
Name: count, dtype: int64
INFO:birdwatch.pflip_model:total ratings included in pflip model: 6994350
INFO:birdwatch.pflip_model:noteInfo summary: e2c24b68b25a9bbff699622f6a89a560945562677f9c085e5dd585d6e6590771
INFO:birdwatch.pflip_model:pflip training data size: 99120
INFO:birdwatch.pflip_model:trainDataFrame summary: 498bd614900c763a5f6fd9998411d7751c26971b9ea540baa3b8f843d57913b7
INFO:birdwatch.pflip_model:pflip validation data size: 11014
INFO:birdwatch.pflip_model:validationDataFrame summary: e7eb501363bac44ad90adb6a363d1d0c0782a50722ca1e9e196120c0b16c474e
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/feature_extraction/text.py:525: UserWarning: The parameter 'token_pattern' will not be used since 'tokenizer' is not None'
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/feature_extraction/text.py:525: UserWarning: The parameter 'token_pattern' will not be used since 'tokenizer' is not None'
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 0 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 6 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 7 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 8 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 9 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 10 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 11 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 12 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 13 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 14 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 15 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 1 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 2 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 4 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 5 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 7 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 8 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 9 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 10 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 12 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 13 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 15 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 16 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 17 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 18 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 19 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 20 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 21 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 22 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 23 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 24 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 25 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 26 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 27 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 28 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 29 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 30 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 31 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 33 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 34 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 35 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 36 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 37 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 38 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 39 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 40 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 41 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 42 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 43 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:313: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 44 are removed. Consider decreasing the number of bins.
warnings.warn(
/home/ubuntu/communitynotes/.env/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py:239: FutureWarning: In version 1.5 onwards, subsample=200_000 will be used by default. Set subsample explicitly to silence this warning in the mean time. Set subsample=None to disable subsampling explicitly.
warnings.warn(
INFO:birdwatch.pflip_model:Training Results:
INFO:birdwatch.pflip_model:threshold=-7.586273318203936 tpr=0.7354495628343991 fpr=0.25001460536308934 auc=0.8297859913674852
INFO:birdwatch.pflip_model:Validation Results:
INFO:birdwatch.pflip_model:threshold=-7.586273318203936 tpr=0.6991725768321513 fpr=0.26251638269986893 auc=0.7994188595472024
INFO:birdwatch.run_scoring:Final value of OPENBLAS_NUM_THREADS: None
INFO:birdwatch.constants:Fitting pflip model elapsed time: 387.40 secs (6.46 mins)
INFO:birdwatch.run_scoring:We invoked run_scoring and are now in between prescoring and scoring.
INFO:birdwatch.run_scoring:Starting final scoring
INFO:birdwatch.run_scoring:notes total RAM: 125118992 bytes (0.125 GB)
column dtype RAM
0 noteId int64 12670240
1 noteAuthorParticipantId object 12670240
2 createdAtMillis int64 12670240
3 tweetId object 12670240
4 classification object 12670240
5 believable category 1583904
6 harmful category 1583904
7 validationDifficulty category 1583904
8 misleadingOther Int8 3167560
9 misleadingFactualError Int8 3167560
10 misleadingManipulatedMedia Int8 3167560
11 misleadingOutdatedInformation Int8 3167560
12 misleadingMissingImportantContext Int8 3167560
13 misleadingUnverifiedClaimAsFact Int8 3167560
14 misleadingSatire Int8 3167560
15 notMisleadingOther Int8 3167560
16 notMisleadingFactuallyCorrect Int8 3167560
17 notMisleadingOutdatedButNotWhenWritten Int8 3167560
18 notMisleadingClearlySatire Int8 3167560
19 notMisleadingPersonalOpinion Int8 3167560
20 trustworthySources Int8 3167560
21 summary object 12670240
22 isMediaNote Int8 3167560
INFO:birdwatch.run_scoring:ratings total RAM: 11549335002 bytes (11.549 GB)
column dtype RAM
0 noteId int64 972575568
1 raterParticipantId object 972575568
2 createdAtMillis int64 972575568
3 version Int8 243143892
4 agree Int8 243143892
5 disagree Int8 243143892
6 helpful Int8 243143892
7 notHelpful Int8 243143892
8 helpfulnessLevel category 121572078
9 helpfulOther Int8 243143892
10 helpfulInformative Int8 243143892
11 helpfulClear Int8 243143892
12 helpfulEmpathetic Int8 243143892
13 helpfulGoodSources Int8 243143892
14 helpfulUniqueContext Int8 243143892
15 helpfulAddressesClaim Int8 243143892
16 helpfulImportantContext Int8 243143892
17 helpfulUnbiasedLanguage Int8 243143892
18 notHelpfulOther Int8 243143892
19 notHelpfulIncorrect Int8 243143892
20 notHelpfulSourcesMissingOrUnreliable Int8 243143892
21 notHelpfulOpinionSpeculationOrBias Int8 243143892
22 notHelpfulMissingKeyPoints Int8 243143892
23 notHelpfulOutdated Int8 243143892
24 notHelpfulHardToUnderstand Int8 243143892
25 notHelpfulArgumentativeOrBiased Int8 243143892
26 notHelpfulOffTopic Int8 243143892
27 notHelpfulSpamHarassmentOrAbuse Int8 243143892
28 notHelpfulIrrelevantSources Int8 243143892
29 notHelpfulOpinionSpeculation Int8 243143892
30 notHelpfulNoteNotNeeded Int8 243143892
31 ratedOnTweetId int64 972575568
32 helpfulNum float64 972575568
INFO:birdwatch.run_scoring:noteStatusHistory total RAM: 230089929 bytes (0.230 GB)
column dtype RAM
0 noteId int64 14269032
1 noteAuthorParticipantId object 14269032
2 createdAtMillis float64 14269032
3 timestampMillisOfFirstNonNMRStatus float64 14269032
4 firstNonNMRStatus category 1783753
5 timestampMillisOfCurrentStatus float64 14269032
6 currentStatus category 1783761
7 timestampMillisOfLatestNonNMRStatus float64 14269032
8 mostRecentNonNMRStatus category 1783753
9 timestampMillisOfStatusLock float64 14269032
10 lockedStatus category 1783761
11 timestampMillisOfRetroLock float64 14269032
12 currentCoreStatus category 1783761
13 currentExpansionStatus category 1783761
14 currentGroupStatus category 1783761
15 currentDecidedBy category 1784377
16 currentModelingGroup float64 14269032
17 timestampMillisOfMostRecentStatusChange float64 14269032
18 timestampMillisOfNmrDueToMinStableCrhTime float64 14269032
19 currentMultiGroupStatus category 1783761
20 currentModelingMultiGroup float64 14269032
21 timestampMinuteOfFinalScoringOutput float64 14269032
22 timestampMillisOfFirstNmrDueToMinStableCrhTime float64 14269032
23 classification object 14269032
INFO:birdwatch.run_scoring:userEnrollment total RAM: 60314631 bytes (0.060 GB)
column dtype RAM
0 participantId object 8465208
1 enrollmentState object 8465208
2 successfulRatingNeededToEarnIn int64 8465208
3 timestampOfLastStateChange int64 8465208
4 timestampOfLastEarnOut float64 8465208
5 modelingPopulation category 1058175
6 modelingGroup float64 8465208
7 numberOfTimesEarnedOut int64 8465208
INFO:birdwatch.run_scoring:prescoringNoteModelOutput total RAM: 293538924 bytes (0.294 GB)
column dtype RAM
0 noteId object 65230872
1 internalNoteIntercept float32 32615436
2 internalNoteFactor1 float32 32615436
3 scorerName object 65230872
4 lowDiligenceNoteIntercept float32 32615436
5 lowDiligenceNoteFactor1 float32 32615436
6 lowDiligenceNoteInterceptRound2 float32 32615436
INFO:birdwatch.run_scoring:prescoringRaterModelOutput total RAM: 407339161 bytes (0.407 GB)
column dtype RAM
0 raterParticipantId object 32264488
1 internalRaterIntercept float32 16132244
2 internalRaterFactor1 float32 16132244
3 crhCrnhRatioDifference float64 32264488
4 meanNoteScore float64 32264488
5 raterAgreeRatio float64 32264488
6 aboveHelpfulnessThreshold object 32264488
7 scorerName object 32264488
8 internalRaterReputation float32 16132244
9 lowDiligenceRaterIntercept float32 16132244
10 lowDiligenceRaterFactor1 float32 16132244
11 lowDiligenceRaterReputation float32 16132244
12 lowDiligenceRaterInterceptRound2 float32 16132244
13 incorrectTagRatingsMadeByRater Int64 36297549
14 totalRatingsMadeByRater float64 32264488
15 postSelectionValue float64 32264488
INFO:birdwatch.constants:Logging Final Scoring RAM usage elapsed time: 0.06 secs (0.00 mins)
INFO:birdwatch.run_scoring:No previous scored notes passed; scoring all notes.
INFO:birdwatch.run_scoring:2. Rescore all recently created notes if not rescored at the minimum frequency.
INFO:birdwatch.run_scoring:Num notes created recently: 41255
INFO:birdwatch.run_scoring:3. Rescore all notes that flipped status in the previous scoring run. 33
INFO:birdwatch.run_scoring:4. Rescore all recently-flipped notes if not rescored at the minimum frequency.
INFO:birdwatch.run_scoring:Num notes flipped recently: 0
INFO:birdwatch.run_scoring:Num notes not rescored recently enough: 1721496
INFO:birdwatch.run_scoring:5. Rescore all notes that were NMRed due to MinStableCrhTime was not met. 22
INFO:birdwatch.run_scoring:6. Rescore recent unlocked notes that are eligible for locking 11360
INFO:birdwatch.run_scoring:----
Notes to rescore:
* 0 notes with new ratings since last scoring run.
* 36375 notes created recently and not rescored recently enough.
* 33 notes that flipped status in the previous scoring run.
* 0 notes that flipped status recently and not rescored recently enough.
* 22 notes that were NMRed due to MinStableCrhTime was not met.
* 11360 recent notes that are eligible to lock but haven't locked yet.
Overall: 47736 notes to rescore, out of 1583780 total.
----
INFO:birdwatch.constants:Determine which notes to score. elapsed time: 0.08 secs (0.00 mins)
INFO:birdwatch.process_data:Timestamp of latest rating in data: 2025-01-12 01:03:22.523000
INFO:birdwatch.process_data:Timestamp of latest note in data: 2025-01-12 01:02:59.773000
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_status_history.py, in merge_note_info, at line 31: newNoteStatusHistory = oldNoteStatusHistory.merge(
PandasTypeError: Input mismatch on createdAtMillis: left=float64 vs right=int64 (allowed)
PandasTypeError: Output mismatch on createdAtMillis_notes: result=float64 expected=int64 (allowed)
INFO:birdwatch.note_status_history:total notes added to noteStatusHistory: 0
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_status_history.py, in merge_note_info, at line 57: newNoteStatusHistory[[c.noteIdKey, c.createdAtMillisKey]].merge(
PandasTypeError: Input mismatch on createdAtMillis: left=float64 vs right=int64 (allowed)
PandasTypeError: Merge key mismatch on createdAtMillis: left=float64 vs right=int64 (allowed)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/process_data.py, in _filter_misleading_notes, at line 270: ratings = ratings.merge(
PandasTypeError: Input mismatch on createdAtMillis: left=int64 vs right=float64 (allowed)
INFO:birdwatch.process_data:Preprocess Data: Filter misleading notes, starting with 121571946 ratings on 1591576 notes
INFO:birdwatch.process_data: Keeping 87726864 ratings on 1071361 misleading notes
INFO:birdwatch.process_data: Keeping 8970460 ratings on 152922 deleted notes that were previously scored (in note status history)
INFO:birdwatch.process_data: Removing 0 ratings on 0 older notes that aren't deleted, but are not-misleading.
INFO:birdwatch.process_data: Removing 0 ratings on 0 notes that were deleted and not in note status history (e.g. old).
INFO:birdwatch.process_data:Num Ratings: 121571946, Num Unique Notes Rated: 1591576, Num Unique Raters: 1057435
INFO:birdwatch.constants:Preprocess smaller dataset since we skipped preprocessing at read time elapsed time: 477.86 secs (7.96 mins)
INFO:birdwatch.topic_model:Assigning notes to topics:
INFO:birdwatch.constants:Get Note Topics: Predict elapsed time: 81.74 secs (1.36 mins)
INFO:birdwatch.topic_model: Notes unassigned due to multiple matches: 1737
INFO:birdwatch.constants:Get Note Topics: Make Seed Labels elapsed time: 83.26 secs (1.39 mins)
INFO:birdwatch.topic_model: Post Topic assignment results: [908706 26730 54332 2365]
INFO:birdwatch.topic_model: Note Topic assignment results:
noteTopic
GazaConflict 112514
UkraineConflict 45735
MessiRonaldo 4054
Name: count, dtype: int64
INFO:birdwatch.constants:Get Note Topics: Merge and assign predictions elapsed time: 1.74 secs (0.03 mins)
INFO:birdwatch.constants:Note Topic Assignment elapsed time: 185.87 secs (3.10 mins)
INFO:birdwatch.run_scoring:Post Selection Similarity Final Scoring: begin with 121571946 ratings.
/home/ubuntu/communitynotes/sourcecode/scoring/post_selection_similarity.py:111: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratingsWithPostSelectionSimilarityValue.sort_values(
/home/ubuntu/communitynotes/sourcecode/scoring/post_selection_similarity.py:114: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratingsWithPostSelectionSimilarityValue.drop_duplicates(
INFO:birdwatch.run_scoring:Post Selection Similarity Final Scoring: 120945188 ratings remaining.
INFO:birdwatch.constants:Post Selection Similarity: Final Scoring elapsed time: 300.55 secs (5.01 mins)
INFO:birdwatch.run_scoring:Starting parallel scorer execution with 23 scorers.
INFO:birdwatch.run_scoring:MFCoreScorer run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.run_scoring:MFExpansionScorer run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.run_scoring:MFExpansionPlusScorer run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.run_scoring:ReputationScorer run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.run_scoring:MFGroupScorer_13 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.run_scoring:MFGroupScorer_12 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.run_scoring:MFGroupScorer_13 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_13 run_scorer_parallelizable: Loading data elapsed time: 31.17 secs (0.52 mins)
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFGroupScorer_13 set to: 8
INFO:birdwatch.run_scoring:ReputationScorer run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:ReputationScorer run_scorer_parallelizable: Loading data elapsed time: 31.80 secs (0.53 mins)
INFO:birdwatch.scorer:score_final: Torch intra-op parallelism for ReputationScorer set to: 12
INFO:birdwatch.run_scoring:MFExpansionScorer run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFExpansionScorer run_scorer_parallelizable: Loading data elapsed time: 32.06 secs (0.53 mins)
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_13. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFExpansionScorer set to: 12
INFO:birdwatch.run_scoring:MFGroupScorer_12 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_12 run_scorer_parallelizable: Loading data elapsed time: 31.97 secs (0.53 mins)
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFGroupScorer_12 set to: 4
INFO:birdwatch.run_scoring:MFExpansionPlusScorer run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFExpansionPlusScorer run_scorer_parallelizable: Loading data elapsed time: 32.26 secs (0.54 mins)
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFExpansionPlusScorer set to: 12
INFO:birdwatch.run_scoring:MFCoreScorer run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFCoreScorer run_scorer_parallelizable: Loading data elapsed time: 32.51 secs (0.54 mins)
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFCoreScorer set to: 12
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_12. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.scorer:Filtering ratings for ReputationScorer. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.scorer:Filtering ratings for MFExpansionScorer. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.scorer:Filtering ratings for MFExpansionPlusScorer. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.scorer:Filtering ratings for MFCoreScorer. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings after group filter: 787651
INFO:birdwatch.scorer:MFGroupScorer_12 Filter input elapsed time: 42.24 secs (0.70 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 475575, Num Unique Notes Rated: 32871, Num Unique Raters: 11476
INFO:birdwatch.scorer:MFGroupScorer_12 Prepare ratings elapsed time: 0.28 secs (0.00 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
INFO:birdwatch.helpfulness_scores:Unique Raters: 4886
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 23120
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 5556
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 4886
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 322927
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 322927
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 4886, Notes: 32833
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 9.835439953705114
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 66.09230454359394
INFO:birdwatch.matrix_factorization:Correcting loss function to simulate rating per note loss ratio = 10.068276252833039
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.matrix_factorization:epoch 0 0.15474192798137665
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10589989274740219
INFO:birdwatch.matrix_factorization:epoch 20 0.10260923951864243
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06657733023166656
INFO:birdwatch.matrix_factorization:epoch 40 0.09916044771671295
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06444774568080902
INFO:birdwatch.matrix_factorization:Num epochs: 51
INFO:birdwatch.matrix_factorization:epoch 51 0.09894904494285583
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06454918533563614
INFO:birdwatch.matrix_factorization:Global Intercept: 0.18792936205863953
INFO:birdwatch.scorer:MFGroupScorer_12 Final helpfulness-filtered MF elapsed time: 3.22 secs (0.05 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_12 final scoring, about to call diligence with 322927 final round ratings.
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:467: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
noteInitState[c.internalNoteInterceptKey] = noteInitState[c.internalNoteInterceptRound2Key]
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:470: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = raterInitState[c.internalRaterInterceptRound2Key]
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
noteId ... internalNoteInterceptRound2
0 1691896445111087535 ... -1.836983
1 1710861026604834963 ... -0.291341
2 1710982119822852314 ... 4.525461
3 1712851765647876276 ... -2.326732
4 1712851975610487188 ... -0.918698
... ... ... ...
31763 1857577215380070683 ... -0.352948
31764 1864044809939243091 ... -0.294801
31765 1714417073764421719 ... -0.432268
31766 1828127526306169170 ... -0.502986
31767 1873505271571488803 ... -0.661702
[31768 rows x 4 columns],
raterInitState:
raterParticipantId ... internalRaterInterceptRound2
0 00029D1FDD352D79B5073189C3F2BDF6377581F50D66C1... ... NaN
1 00053CDCAC04E3692F4A01305C8F3D093CCE221157D539... ... NaN
2 0005983E6E18862483AB372C5B61FEBC1F8A573E7701F9... ... NaN
3 000957CF1421B543AEAFEBF835033D3BA5FB1B99FB0AF8... ... NaN
4 001041D12A03F39CCB40BEA9458C469323254EEC76348B... ... -0.217365
... ... ... ...
23115 FFE87CF4860C52665B228E9F345BB3EE183994416FA6D7... ... NaN
23116 FFEEE02BCED1134EB1C57875779C03F2135B72BB4C8E7F... ... 0.393743
23117 FFF3E935633C6870DE7674D0681C5821BC408073C84A36... ... NaN
23118 FFFA40CBF0CC13E71072BFE89E80372A5907BD9D2EDA54... ... NaN
23119 FFFA43EFB0AAB3BFD273666FF123BFE69D863B9A2F5E44... ... NaN
[23120 rows x 5 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 4886, vs. num we are initializing: 23120
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 4886
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 4886, vs. num we are initializing: 23120
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 4886
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterReputation:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 4886, vs. num we are initializing: 23120
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterReputations: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterReputations: 4886
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 32833, vs. num we are initializing: 31768
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteFactor1s: 32233
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteFactor1s: 600
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 32833, vs. num we are initializing: 31768
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteIntercepts: 32233
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteIntercepts: 600
INFO:birdwatch.reputation_matrix_factorization:Final scoring, initial round fitting reputation MF (equivalent to Round 2 in Prescoring - learn note factor)
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=5.909509 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.651407 | time=0.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.619618 | time=0.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.616207 | time=0.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.615797 | time=1.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=2.615681 | time=1.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=165 | loss=2.615649 | time=1.7s
INFO:birdwatch.reputation_matrix_factorization:Final scoring, final round fitting reputation MF: learn just note intercept
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:505: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = savedFinalRoundPrescoringRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 4886, vs. num we are initializing: 23120
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 4886
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.546920 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.484418 | time=0.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.483370 | time=0.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.483336 | time=0.8s
INFO:birdwatch.diligence_model:Low diligence final loss: 0.4833
INFO:birdwatch.mf_base_scorer:diligenceNP cols: Index(['noteId', 'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'], dtype='object')
INFO:birdwatch.mf_base_scorer:np cols: Index(['noteId', 'noteIndex', 'internalNoteIntercept', 'internalNoteFactor1',
'internalNoteFactor1_max', 'internalNoteFactor1_median',
'internalNoteFactor1_min', 'internalNoteFactor1_refit_orig',
'internalNoteIntercept_median', 'internalNoteIntercept_refit_orig',
'ratingCount_all', 'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_12 Low Diligence Reputation Model elapsed time: 3.04 secs (0.05 mins)
INFO:birdwatch.mf_base_scorer:About to call compute_scored_notes with MFGroupScorer_12
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer: Ratings after group filter: 35923731
INFO:birdwatch.scorer:MFGroupScorer_13 Filter input elapsed time: 54.44 secs (0.91 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.scorer: Ratings after group filter: 120945188
INFO:birdwatch.scorer:MFExpansionPlusScorer Filter input elapsed time: 54.66 secs (0.91 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 494: noteStats = tagAggregates.merge(noteStats, on=c.noteIdKey, how="outer")
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:compute_scored_notes: compute tag aggregates elapsed time: 2.54 secs (0.04 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:82: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals.drop(columns_to_drop, inplace=True, axis=1)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:84: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = (
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:91: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:95: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:99: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey] = ratings_w_user_totals[
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 499: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on num_voters_interval: result=float64 expected=int64 (allowed)
INFO:birdwatch.constants:compute_scored_notes: compute incorrect aggregates elapsed time: 2.74 secs (0.05 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.62 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.74 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.66 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.59 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.74 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRHInertia (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRHInertia (v1.0) elapsed time: 1.02 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRHInertia (v1.0) elapsed time: 1.68 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: TagFilter (v1.0)
INFO:birdwatch.scorer: Ratings after group filter: 104368644
INFO:birdwatch.scorer:ReputationScorer Filter input elapsed time: 65.37 secs (1.09 mins)
INFO:birdwatch.reputation_scorer:seeding with 0
INFO:birdwatch.scorer: Ratings after group filter: 104368644
INFO:birdwatch.scorer:MFCoreScorer Filter input elapsed time: 65.25 secs (1.09 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.scoring_rules:Candidate notes prior to tag filtering: 1781732
INFO:birdwatch.scoring_rules:Checking note tags:
INFO:birdwatch.scoring_rules:notHelpfulOther
INFO:birdwatch.scoring_rules:notHelpfulIncorrect
INFO:birdwatch.scoring_rules:notHelpfulSourcesMissingOrUnreliable
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculationOrBias
INFO:birdwatch.scoring_rules:notHelpfulMissingKeyPoints
INFO:birdwatch.scoring_rules:notHelpfulOutdated
INFO:birdwatch.scoring_rules:notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:outlier filtering disabled for tag: notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:notHelpfulArgumentativeOrBiased
INFO:birdwatch.scoring_rules:notHelpfulOffTopic
INFO:birdwatch.scoring_rules:notHelpfulSpamHarassmentOrAbuse
INFO:birdwatch.scoring_rules:notHelpfulIrrelevantSources
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculation
INFO:birdwatch.scoring_rules:notHelpfulNoteNotNeeded
INFO:birdwatch.scoring_rules:Total {note, tag} pairs where tag filter logic triggered: 903
INFO:birdwatch.scoring_rules:Total unique notes impacted by tag filtering: 564
INFO:birdwatch.constants:Calling score_notes: TagFilter (v1.0) elapsed time: 2.96 secs (0.05 mins)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/scoring_rules.py, in apply_scoring_rules, at line 1099: noteColumns = noteColumns.merge(
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:Applying scoring rule: TagFilter (v1.0) elapsed time: 3.56 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: CRHSuperThreshold (v1.0)
INFO:birdwatch.constants:Calling score_notes: CRHSuperThreshold (v1.0) elapsed time: 0.09 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: CRHSuperThreshold (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: ElevatedCRHInertia (v1.0)
INFO:birdwatch.scorer: Ratings after group filter: 120942984
INFO:birdwatch.constants:Calling score_notes: ElevatedCRHInertia (v1.0) elapsed time: 0.92 secs (0.02 mins)
INFO:birdwatch.scorer:MFExpansionScorer Filter input elapsed time: 69.33 secs (1.16 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.constants:Applying scoring rule: ElevatedCRHInertia (v1.0) elapsed time: 1.52 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterIncorrect (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by incorrect filtering: 174
INFO:birdwatch.constants:Calling score_notes: FilterIncorrect (v1.0) elapsed time: 2.91 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterIncorrect (v1.0) elapsed time: 3.58 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLowDiligence (v1.0)
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 35144690, Num Unique Notes Rated: 621125, Num Unique Raters: 220896
INFO:birdwatch.scorer:MFGroupScorer_13 Prepare ratings elapsed time: 21.55 secs (0.36 mins)
INFO:birdwatch.scoring_rules:Total notes impacted by low diligence filtering: 7346
INFO:birdwatch.constants:Calling score_notes: FilterLowDiligence (v1.0) elapsed time: 2.92 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLowDiligence (v1.0) elapsed time: 3.56 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLargeFactor (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by large factor filtering: 20
INFO:birdwatch.constants:Calling score_notes: FilterLargeFactor (v1.0) elapsed time: 0.77 secs (0.01 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLargeFactor (v1.0) elapsed time: 1.39 secs (0.02 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
INFO:birdwatch.helpfulness_scores:Unique Raters: 104455
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 226673
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 111397
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 39.60 secs (0.66 mins)
INFO:birdwatch.mf_base_scorer:sn cols: Index(['noteId', 'ratingWeight', 'notHelpfulOtherAdjusted',
'notHelpfulIncorrectAdjusted',
'notHelpfulSourcesMissingOrUnreliableAdjusted',
'notHelpfulOpinionSpeculationOrBiasAdjusted',
'notHelpfulMissingKeyPointsAdjusted', 'notHelpfulOutdatedAdjusted',
'notHelpfulHardToUnderstandAdjusted',
'notHelpfulArgumentativeOrBiasedAdjusted', 'notHelpfulOffTopicAdjusted',
'notHelpfulSpamHarassmentOrAbuseAdjusted',
'notHelpfulIrrelevantSourcesAdjusted',
'notHelpfulOpinionSpeculationAdjusted',
'notHelpfulNoteNotNeededAdjusted', 'notHelpfulOtherAdjustedRatio',
'notHelpfulIncorrectAdjustedRatio',
'notHelpfulSourcesMissingOrUnreliableAdjustedRatio',
'notHelpfulOpinionSpeculationOrBiasAdjustedRatio',
'notHelpfulMissingKeyPointsAdjustedRatio',
'notHelpfulOutdatedAdjustedRatio',
'notHelpfulHardToUnderstandAdjustedRatio',
'notHelpfulArgumentativeOrBiasedAdjustedRatio',
'notHelpfulOffTopicAdjustedRatio',
'notHelpfulSpamHarassmentOrAbuseAdjustedRatio',
'notHelpfulIrrelevantSourcesAdjustedRatio',
'notHelpfulOpinionSpeculationAdjustedRatio',
'notHelpfulNoteNotNeededAdjustedRatio', 'helpfulOther',
'helpfulInformative', 'helpfulClear', 'helpfulEmpathetic',
'helpfulGoodSources', 'helpfulUniqueContext', 'helpfulAddressesClaim',
'helpfulImportantContext', 'helpfulUnbiasedLanguage', 'notHelpfulOther',
'notHelpfulIncorrect', 'notHelpfulSourcesMissingOrUnreliable',
'notHelpfulOpinionSpeculationOrBias', 'notHelpfulMissingKeyPoints',
'notHelpfulOutdated', 'notHelpfulHardToUnderstand',
'notHelpfulArgumentativeOrBiased', 'notHelpfulOffTopic',
'notHelpfulSpamHarassmentOrAbuse', 'notHelpfulIrrelevantSources',
'notHelpfulOpinionSpeculation', 'notHelpfulNoteNotNeeded', 'numRatings',
'noteAuthorParticipantId', 'classification', 'currentStatus',
'internalNoteIntercept', 'internalNoteFactor1',
'lowDiligenceNoteIntercept', 'internalNoteFactor1_max',
'internalNoteFactor1_median', 'internalNoteFactor1_min',
'internalNoteFactor1_refit_orig', 'internalNoteIntercept_median',
'internalNoteIntercept_refit_orig', 'ratingCount_all',
'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'notHelpfulIncorrect_interval', 'p_incorrect_user_interval',
'num_voters_interval', 'tf_idf_incorrect_interval',
'internalRatingStatus', 'internalActiveRules', 'activeFilterTags',
'crhBool', 'crnhBool', 'awaitingBool'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_12 Final compute scored notes elapsed time: 69.30 secs (1.15 mins)
INFO:birdwatch.scorer:Postprocessing output for MFGroupScorer_12
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 104455
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 19432602
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 19432602
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 103691510, Num Unique Notes Rated: 1229018, Num Unique Raters: 795028
INFO:birdwatch.scorer:MFCoreScorer Prepare ratings elapsed time: 60.18 secs (1.00 mins)
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 120335836, Num Unique Notes Rated: 1323087, Num Unique Raters: 1057223
INFO:birdwatch.scorer:MFExpansionPlusScorer Prepare ratings elapsed time: 71.63 secs (1.19 mins)
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 104455, Notes: 620077
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 31.339014348218043
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 186.0380259441865
INFO:birdwatch.matrix_factorization:Correcting loss function to simulate rating per note loss ratio = 31.414247069723523
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.matrix_factorization:epoch 0 0.12243042886257172
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09816668182611465
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 120333624, Num Unique Notes Rated: 1323084, Num Unique Raters: 1057188
INFO:birdwatch.scorer:MFExpansionScorer Prepare ratings elapsed time: 72.53 secs (1.21 mins)
INFO:birdwatch.process_data:After applying min 10 ratings per rater and min 5 raters per note:
Num Ratings: 102895565, Num Unique Notes Rated: 1227415, Num Unique Raters: 599301
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
INFO:birdwatch.matrix_factorization:epoch 20 0.10489216446876526
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07929407805204391
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
INFO:birdwatch.scorer: Original noteScores length: 1783629
INFO:birdwatch.scorer: Final noteScores length: 5006
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in score_final, at line 1190: noteScores = noteScores.merge(
PandasTypeError: Output mismatch on numFinalRoundRatings: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_12 Postprocess output elapsed time: 56.61 secs (0.94 mins)
INFO:birdwatch.run_scoring:MFGroupScorer_11 run_scorer_parallelizable just started in parallel: loading data from shared memory.
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
INFO:birdwatch.matrix_factorization:epoch 40 0.10382652282714844
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07794012129306793
INFO:birdwatch.matrix_factorization:Num epochs: 56
INFO:birdwatch.matrix_factorization:epoch 56 0.10370488464832306
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0778801366686821
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1562773585319519
INFO:birdwatch.scorer:MFGroupScorer_13 Final helpfulness-filtered MF elapsed time: 83.62 secs (1.39 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_13 final scoring, about to call diligence with 19432602 final round ratings.
INFO:birdwatch.run_scoring:MFGroupScorer_11 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_11 run_scorer_parallelizable: Loading data elapsed time: 27.14 secs (0.45 mins)
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFGroupScorer_11 set to: 4
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_11. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:467: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
noteInitState[c.internalNoteInterceptKey] = noteInitState[c.internalNoteInterceptRound2Key]
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:470: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = raterInitState[c.internalRaterInterceptRound2Key]
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
noteId ... internalNoteInterceptRound2
0 1549781045201047554 ... 0.534424
1 1592925068132245504 ... -0.290130
2 1593079642092617729 ... 1.113199
3 1595167355637796876 ... 0.190297
4 1597230938316054532 ... -1.577253
... ... ... ...
618452 1829947533667299426 ... -0.269345
618453 1663589142351970305 ... -0.305630
618454 1741105701643268121 ... 1.320487
618455 1694299885778981367 ... -0.170205
618456 1783727968046432453 ... -0.206472
[618457 rows x 4 columns],
raterInitState:
raterParticipantId ... internalRaterInterceptRound2
0 000045A5FA0CF004F68CBF2913506C37D540CF48522D33... ... -0.476654
1 00018DBB934257251EBCEE91D0722C71B7DD592A571398... ... NaN
2 00022C96980039352E2D04B5E533090FA8BA333F87C5EB... ... 0.232833
3 0002725E706CF18C040E21F30CE2D39994513C3BB8CF58... ... NaN
4 000274A83456E40A03B81628F432D06A3506E28C77FEA8... ... NaN
... ... ... ...
226668 FFFEB058BCC25277E2662DD3E8C0506FB1B23BA4D965EA... ... NaN
226669 FFFEB27D6E27351D14EB43777F265F694744ABB4B3B7AD... ... 0.317591
226670 FFFF0C7BF4089C6436CAB332B309A1A81C21E11CD61CE4... ... NaN
226671 FFFF3B1E5FB7927B196BCC7753E5CE5B2E64AFA90099E0... ... NaN
226672 FFFF7E0B3ADB6FC5FB42B0F01FFD24495410C1AE4AC986... ... -0.162698
[226673 rows x 5 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 104455, vs. num we are initializing: 226673
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 104455
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 104455, vs. num we are initializing: 226673
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 104455
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterReputation:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 104455, vs. num we are initializing: 226673
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterReputations: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterReputations: 104455
INFO:birdwatch.helpfulness_scores:Unique Raters: 382560
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 582446
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 413599
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 620077, vs. num we are initializing: 618457
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteFactor1s: 581274
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteFactor1s: 38803
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 620077, vs. num we are initializing: 618457
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteIntercepts: 581274
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteIntercepts: 38803
INFO:birdwatch.reputation_matrix_factorization:Final scoring, initial round fitting reputation MF (equivalent to Round 2 in Prescoring - learn note factor)
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=4.512995 | time=0.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.436904 | time=11.8s
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.helpfulness_scores:Unique Raters: 496789
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 722512
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 549629
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
noteId ... internalNoteInterceptRound2
0 1352796878438424576 ... -0.059589
1 1353415873227177985 ... 0.047713
2 1354586938863443971 ... NaN
3 1354588003075764229 ... NaN
4 1354588172659920899 ... NaN
... ... ... ...
1783624 1878254806986281330 ... NaN
1783625 1878254878893674977 ... NaN
1783626 1878255194250576094 ... NaN
1783627 1878255394629542201 ... NaN
1783628 1878255526393344046 ... NaN
[1783629 rows x 7 columns],
raterInitState:
raterParticipantId ... internalRaterInterceptRound2
0 0000010BB832A9CFDF102BF7B66896FA987C80FBB61EF6... ... 0.126661
1 000011269AD6F327AED0F4086A732B4052F9D28E8791E1... ... 0.086200
2 0000315D36021A528D85155729DDBF2E299BB8C3040878... ... 0.142033
3 000045A5FA0CF004F68CBF2913506C37D540CF48522D33... ... -0.104796
4 00005300B9017670433392BF6767238D54E058EC25D5C5... ... 0.169990
... ... ... ...
599296 FFFFAB2FDBC1968F4CFE97A86D88963D702B636365B6CD... ... 0.183009
599297 FFFFBBAB3C66ABB4DBC2A3B486C3C673345C89B5858465... ... -0.087869
599298 FFFFC819886B2F837503D840D59EE8321A835AAF2B5C1E... ... -0.195781
599299 FFFFD54D8094D7620A7C3E162F98198FBDBD3401A4F2FB... ... -0.394508
599300 FFFFFE8909485374E33854B934713713CAC93CDB50C9D0... ... -0.017513
[599301 rows x 16 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 599301, vs. num we are initializing: 599301
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 599301
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 599301, vs. num we are initializing: 599301
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.410068 | time=23.1s
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 599301
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterReputation:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 599301, vs. num we are initializing: 599301
INFO:birdwatch.scorer: Ratings after group filter: 1761412
INFO:birdwatch.scorer:MFGroupScorer_11 Filter input elapsed time: 46.88 secs (0.78 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 1135370, Num Unique Notes Rated: 94421, Num Unique Raters: 11899
INFO:birdwatch.scorer:MFGroupScorer_11 Prepare ratings elapsed time: 0.55 secs (0.01 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterReputations: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterReputations: 599301
INFO:birdwatch.helpfulness_scores:Unique Raters: 6579
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 49542
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 7158
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 6579
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 741462
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 741462
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 6579, Notes: 94215
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 7.869893329087725
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 112.70132238942088
INFO:birdwatch.matrix_factorization:Correcting loss function to simulate rating per note loss ratio = 7.93073593073593
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.matrix_factorization:epoch 0 0.13474147021770477
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1061607077717781
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 1227415, vs. num we are initializing: 1783629
INFO:birdwatch.matrix_factorization:epoch 20 0.10054232180118561
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06872962415218353
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteFactor1s: 1170798
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteFactor1s: 56617
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 382560
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 53274194
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 53274194
INFO:birdwatch.matrix_factorization:epoch 40 0.0989188700914383
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06740477681159973
INFO:birdwatch.matrix_factorization:epoch 60 0.09868934005498886
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0671992152929306
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 1227415, vs. num we are initializing: 1783629
INFO:birdwatch.matrix_factorization:epoch 80 0.0986587405204773
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06717830896377563
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteIntercepts: 1170798
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteIntercepts: 56617
INFO:birdwatch.reputation_matrix_factorization:Final scoring, initial round fitting reputation MF (equivalent to Round 2 in Prescoring - learn note factor)
INFO:birdwatch.matrix_factorization:Num epochs: 93
INFO:birdwatch.matrix_factorization:epoch 93 0.09865555912256241
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06717663258314133
INFO:birdwatch.matrix_factorization:Global Intercept: 0.16698786616325378
INFO:birdwatch.scorer:MFGroupScorer_11 Final helpfulness-filtered MF elapsed time: 5.29 secs (0.09 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_11 final scoring, about to call diligence with 741462 final round ratings.
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:467: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
noteInitState[c.internalNoteInterceptKey] = noteInitState[c.internalNoteInterceptRound2Key]
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:470: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = raterInitState[c.internalRaterInterceptRound2Key]
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
noteId internalNoteIntercept internalNoteFactor1 \
0 1643057880793325568 2.306396 3.599517
1 1660244070621380610 0.521022 -2.256069
2 1681713296271892480 -7.717273 -0.095602
3 1686264916682919936 1.750654 -1.210147
4 1686753388883546113 -0.222489 2.320199
... ... ... ...
93088 1819830116945387728 -0.440204 -0.854928
93089 1819849846179627161 -0.441013 -0.854774
93090 1819925754207150395 -0.440286 -0.854607
93091 1870385083439513634 2.043123 2.935036
93092 1714789934614098338 -0.236172 0.939513
internalNoteInterceptRound2
0 2.306396
1 0.521022
2 -7.717273
3 1.750654
4 -0.222489
... ...
93088 -0.440204
93089 -0.441013
93090 -0.440286
93091 2.043123
93092 -0.236172
[93093 rows x 4 columns],
raterInitState:
raterParticipantId \
0 000045A5FA0CF004F68CBF2913506C37D540CF48522D33...
1 00018DBB934257251EBCEE91D0722C71B7DD592A571398...
2 0002725E706CF18C040E21F30CE2D39994513C3BB8CF58...
3 00029D1FDD352D79B5073189C3F2BDF6377581F50D66C1...
4 0002D1E11A8EA1E4B25048FA9D117406CE9EB1D3143BC9...
... ...
49537 FFFA43EFB0AAB3BFD273666FF123BFE69D863B9A2F5E44...
49538 FFFA49720F254411E1F79CA757C403F0A0217240BC4922...
49539 FFFC011F23086D8153F0A3FF336F33EE80521EC35F9ACD...
49540 FFFDAB98EE31EC0CC51169937F859D5B676870C6470C19...
49541 FFFEB058BCC25277E2662DD3E8C0506FB1B23BA4D965EA...
internalRaterIntercept internalRaterFactor1 internalRaterReputation \
0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
... ... ... ...
49537 NaN NaN NaN
49538 0.068667 0.657025 0.783342
49539 NaN NaN NaN
49540 NaN NaN NaN
49541 NaN NaN NaN
internalRaterInterceptRound2
0 NaN
1 NaN
2 NaN
3 NaN
4 NaN
... ...
49537 NaN
49538 0.068667
49539 NaN
49540 NaN
49541 NaN
[49542 rows x 5 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 6579, vs. num we are initializing: 49542
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 6579
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 6579, vs. num we are initializing: 49542
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 6579
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterReputation:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 6579, vs. num we are initializing: 49542
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterReputations: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterReputations: 6579
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 94215, vs. num we are initializing: 93093
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteFactor1s: 91655
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteFactor1s: 2560
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 94215, vs. num we are initializing: 93093
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteIntercepts: 91655
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteIntercepts: 2560
INFO:birdwatch.reputation_matrix_factorization:Final scoring, initial round fitting reputation MF (equivalent to Round 2 in Prescoring - learn note factor)
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=7.327492 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.719859 | time=0.7s
INFO:birdwatch.helpfulness_scores:Unique Raters: 496867
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 722844
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 549781
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.205070 | time=1.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.408242 | time=34.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.672142 | time=1.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.664829 | time=2.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.663314 | time=2.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=2.662726 | time=3.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=2.662431 | time=4.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=2.662268 | time=4.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=2.662173 | time=5.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=255 | loss=2.662141 | time=5.8s
INFO:birdwatch.reputation_matrix_factorization:Final scoring, final round fitting reputation MF: learn just note intercept
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:505: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = savedFinalRoundPrescoringRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 6579, vs. num we are initializing: 49542
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 6579
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.570991 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.475896 | time=0.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.474311 | time=1.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.474262 | time=1.6s
INFO:birdwatch.diligence_model:Low diligence final loss: 0.4743
INFO:birdwatch.mf_base_scorer:diligenceNP cols: Index(['noteId', 'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'], dtype='object')
INFO:birdwatch.mf_base_scorer:np cols: Index(['noteId', 'noteIndex', 'internalNoteIntercept', 'internalNoteFactor1',
'internalNoteFactor1_max', 'internalNoteFactor1_median',
'internalNoteFactor1_min', 'internalNoteFactor1_refit_orig',
'internalNoteIntercept_median', 'internalNoteIntercept_refit_orig',
'ratingCount_all', 'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_11 Low Diligence Reputation Model elapsed time: 8.76 secs (0.15 mins)
INFO:birdwatch.mf_base_scorer:About to call compute_scored_notes with MFGroupScorer_11
INFO:birdwatch.reputation_matrix_factorization:epoch=110 | loss=2.408158 | time=42.7s
INFO:birdwatch.reputation_matrix_factorization:Final scoring, final round fitting reputation MF: learn just note intercept
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:505: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = savedFinalRoundPrescoringRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 104455, vs. num we are initializing: 226673
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 104455
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.272076 | time=0.2s
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 494: noteStats = tagAggregates.merge(noteStats, on=c.noteIdKey, how="outer")
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:compute_scored_notes: compute tag aggregates elapsed time: 3.64 secs (0.06 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:82: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals.drop(columns_to_drop, inplace=True, axis=1)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:84: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = (
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:91: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:95: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:99: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey] = ratings_w_user_totals[
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 499: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on num_voters_interval: result=float64 expected=int64 (allowed)
INFO:birdwatch.constants:compute_scored_notes: compute incorrect aggregates elapsed time: 3.43 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.65 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.12 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.75 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.64 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.262751 | time=12.3s
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.61 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.12 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.76 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRHInertia (v1.0)
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 496789
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 62811117
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 62811117
INFO:birdwatch.constants:Calling score_notes: GeneralCRHInertia (v1.0) elapsed time: 1.00 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRHInertia (v1.0) elapsed time: 1.67 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: TagFilter (v1.0)
INFO:birdwatch.scoring_rules:Candidate notes prior to tag filtering: 1778114
INFO:birdwatch.scoring_rules:Checking note tags:
INFO:birdwatch.scoring_rules:notHelpfulOther
INFO:birdwatch.scoring_rules:notHelpfulIncorrect
INFO:birdwatch.scoring_rules:notHelpfulSourcesMissingOrUnreliable
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculationOrBias
INFO:birdwatch.scoring_rules:notHelpfulMissingKeyPoints
INFO:birdwatch.scoring_rules:notHelpfulOutdated
INFO:birdwatch.scoring_rules:notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:outlier filtering disabled for tag: notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:notHelpfulArgumentativeOrBiased
INFO:birdwatch.scoring_rules:notHelpfulOffTopic
INFO:birdwatch.scoring_rules:notHelpfulSpamHarassmentOrAbuse
INFO:birdwatch.scoring_rules:notHelpfulIrrelevantSources
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculation
INFO:birdwatch.scoring_rules:notHelpfulNoteNotNeeded
INFO:birdwatch.scoring_rules:Total {note, tag} pairs where tag filter logic triggered: 1705
INFO:birdwatch.scoring_rules:Total unique notes impacted by tag filtering: 1163
INFO:birdwatch.constants:Calling score_notes: TagFilter (v1.0) elapsed time: 3.03 secs (0.05 mins)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/scoring_rules.py, in apply_scoring_rules, at line 1099: noteColumns = noteColumns.merge(
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:Applying scoring rule: TagFilter (v1.0) elapsed time: 3.63 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: CRHSuperThreshold (v1.0)
INFO:birdwatch.constants:Calling score_notes: CRHSuperThreshold (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: CRHSuperThreshold (v1.0) elapsed time: 0.71 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: ElevatedCRHInertia (v1.0)
INFO:birdwatch.constants:Calling score_notes: ElevatedCRHInertia (v1.0) elapsed time: 0.93 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: ElevatedCRHInertia (v1.0) elapsed time: 1.53 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterIncorrect (v1.0)
INFO:birdwatch.reputation_matrix_factorization:epoch=055 | loss=0.262654 | time=21.9s
INFO:birdwatch.diligence_model:Low diligence final loss: 0.2627
INFO:birdwatch.mf_base_scorer:diligenceNP cols: Index(['noteId', 'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'], dtype='object')
INFO:birdwatch.mf_base_scorer:np cols: Index(['noteId', 'noteIndex', 'internalNoteIntercept', 'internalNoteFactor1',
'internalNoteFactor1_max', 'internalNoteFactor1_median',
'internalNoteFactor1_min', 'internalNoteFactor1_refit_orig',
'internalNoteIntercept_median', 'internalNoteIntercept_refit_orig',
'ratingCount_all', 'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_13 Low Diligence Reputation Model elapsed time: 89.30 secs (1.49 mins)
INFO:birdwatch.mf_base_scorer:About to call compute_scored_notes with MFGroupScorer_13
INFO:birdwatch.scoring_rules:Total notes impacted by incorrect filtering: 274
INFO:birdwatch.constants:Calling score_notes: FilterIncorrect (v1.0) elapsed time: 2.91 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterIncorrect (v1.0) elapsed time: 3.64 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLowDiligence (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by low diligence filtering: 18296
INFO:birdwatch.constants:Calling score_notes: FilterLowDiligence (v1.0) elapsed time: 3.38 secs (0.06 mins)
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 496867
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 62763814
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 62763814
INFO:birdwatch.constants:Applying scoring rule: FilterLowDiligence (v1.0) elapsed time: 4.34 secs (0.07 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLargeFactor (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by large factor filtering: 135
INFO:birdwatch.constants:Calling score_notes: FilterLargeFactor (v1.0) elapsed time: 1.48 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLargeFactor (v1.0) elapsed time: 2.12 secs (0.04 mins)
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 382560, Notes: 1226896
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 43.421931443251914
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 139.25709431200335
INFO:birdwatch.matrix_factorization:Correcting loss function to simulate rating per note loss ratio = 43.473940638371324
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.matrix_factorization:epoch 0 0.12321729958057404
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09819003939628601
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.109748 | time=65.8s
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 40.61 secs (0.68 mins)
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 496789, Notes: 1321133
INFO:birdwatch.matrix_factorization:initializing notes
INFO:birdwatch.mf_base_scorer:sn cols: Index(['noteId', 'ratingWeight', 'notHelpfulOtherAdjusted',
'notHelpfulIncorrectAdjusted',
'notHelpfulSourcesMissingOrUnreliableAdjusted',
'notHelpfulOpinionSpeculationOrBiasAdjusted',
'notHelpfulMissingKeyPointsAdjusted', 'notHelpfulOutdatedAdjusted',
'notHelpfulHardToUnderstandAdjusted',
'notHelpfulArgumentativeOrBiasedAdjusted', 'notHelpfulOffTopicAdjusted',
'notHelpfulSpamHarassmentOrAbuseAdjusted',
'notHelpfulIrrelevantSourcesAdjusted',
'notHelpfulOpinionSpeculationAdjusted',
'notHelpfulNoteNotNeededAdjusted', 'notHelpfulOtherAdjustedRatio',
'notHelpfulIncorrectAdjustedRatio',
'notHelpfulSourcesMissingOrUnreliableAdjustedRatio',
'notHelpfulOpinionSpeculationOrBiasAdjustedRatio',
'notHelpfulMissingKeyPointsAdjustedRatio',
'notHelpfulOutdatedAdjustedRatio',
'notHelpfulHardToUnderstandAdjustedRatio',
'notHelpfulArgumentativeOrBiasedAdjustedRatio',
'notHelpfulOffTopicAdjustedRatio',
'notHelpfulSpamHarassmentOrAbuseAdjustedRatio',
'notHelpfulIrrelevantSourcesAdjustedRatio',
'notHelpfulOpinionSpeculationAdjustedRatio',
'notHelpfulNoteNotNeededAdjustedRatio', 'helpfulOther',
'helpfulInformative', 'helpfulClear', 'helpfulEmpathetic',
'helpfulGoodSources', 'helpfulUniqueContext', 'helpfulAddressesClaim',
'helpfulImportantContext', 'helpfulUnbiasedLanguage', 'notHelpfulOther',
'notHelpfulIncorrect', 'notHelpfulSourcesMissingOrUnreliable',
'notHelpfulOpinionSpeculationOrBias', 'notHelpfulMissingKeyPoints',
'notHelpfulOutdated', 'notHelpfulHardToUnderstand',
'notHelpfulArgumentativeOrBiased', 'notHelpfulOffTopic',
'notHelpfulSpamHarassmentOrAbuse', 'notHelpfulIrrelevantSources',
'notHelpfulOpinionSpeculation', 'notHelpfulNoteNotNeeded', 'numRatings',
'noteAuthorParticipantId', 'classification', 'currentStatus',
'internalNoteIntercept', 'internalNoteFactor1',
'lowDiligenceNoteIntercept', 'internalNoteFactor1_max',
'internalNoteFactor1_median', 'internalNoteFactor1_min',
'internalNoteFactor1_refit_orig', 'internalNoteIntercept_median',
'internalNoteIntercept_refit_orig', 'ratingCount_all',
'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'notHelpfulIncorrect_interval', 'p_incorrect_user_interval',
'num_voters_interval', 'tf_idf_incorrect_interval',
'internalRatingStatus', 'internalActiveRules', 'activeFilterTags',
'crhBool', 'crnhBool', 'awaitingBool'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_11 Final compute scored notes elapsed time: 74.75 secs (1.25 mins)
INFO:birdwatch.scorer:Postprocessing output for MFGroupScorer_11
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 47.54337148492998
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 126.43419439641377
INFO:birdwatch.matrix_factorization:Correcting loss function to simulate rating per note loss ratio = 47.6085012355786
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.matrix_factorization:epoch 0 0.12263049185276031
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09743598848581314
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 496867, Notes: 1321116
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 47.50817793441303
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 126.31914375476737
INFO:birdwatch.matrix_factorization:Correcting loss function to simulate rating per note loss ratio = 47.57325521545964
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.matrix_factorization:epoch 0 0.12266939133405685
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09747980535030365
INFO:birdwatch.matrix_factorization:epoch 20 0.10959278047084808
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08253980427980423
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.108285 | time=131.5s
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 494: noteStats = tagAggregates.merge(noteStats, on=c.noteIdKey, how="outer")
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:compute_scored_notes: compute tag aggregates elapsed time: 74.88 secs (1.25 mins)
INFO:birdwatch.scorer: Original noteScores length: 1783629
INFO:birdwatch.scorer: Final noteScores length: 8725
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in score_final, at line 1190: noteScores = noteScores.merge(
PandasTypeError: Output mismatch on numFinalRoundRatings: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_11 Postprocess output elapsed time: 68.04 secs (1.13 mins)
INFO:birdwatch.run_scoring:MFGroupScorer_10 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.matrix_factorization:epoch 20 0.11050929874181747
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08343624323606491
INFO:birdwatch.matrix_factorization:epoch 40 0.10891925543546677
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08189026266336441
INFO:birdwatch.matrix_factorization:epoch 20 0.11047868430614471
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08340329676866531
INFO:birdwatch.run_scoring:MFGroupScorer_10 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_10 run_scorer_parallelizable: Loading data elapsed time: 29.71 secs (0.50 mins)
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFGroupScorer_10 set to: 4
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_10. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=0.108230 | time=198.1s
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:82: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals.drop(columns_to_drop, inplace=True, axis=1)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:84: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = (
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:91: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:95: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:99: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey] = ratings_w_user_totals[
INFO:birdwatch.matrix_factorization:Num epochs: 59
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 499: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on num_voters_interval: result=float64 expected=int64 (allowed)
INFO:birdwatch.constants:compute_scored_notes: compute incorrect aggregates elapsed time: 66.12 secs (1.10 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:epoch 59 0.10882849991321564
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08167941868305206
INFO:birdwatch.matrix_factorization:Global Intercept: 0.16981279850006104
INFO:birdwatch.scorer:MFCoreScorer Final helpfulness-filtered MF elapsed time: 214.65 secs (3.58 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.76 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.16 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.93 secs (0.02 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.05 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.77 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.69 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.19 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.95 secs (0.02 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRHInertia (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRHInertia (v1.0) elapsed time: 1.17 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRHInertia (v1.0) elapsed time: 1.85 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: TagFilter (v1.0)
INFO:birdwatch.scoring_rules:Candidate notes prior to tag filtering: 1761688
INFO:birdwatch.scoring_rules:Checking note tags:
INFO:birdwatch.scoring_rules:notHelpfulOther
INFO:birdwatch.scoring_rules:notHelpfulIncorrect
INFO:birdwatch.scoring_rules:notHelpfulSourcesMissingOrUnreliable
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculationOrBias
INFO:birdwatch.scoring_rules:notHelpfulMissingKeyPoints
INFO:birdwatch.scoring_rules:notHelpfulOutdated
INFO:birdwatch.scoring_rules:notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:outlier filtering disabled for tag: notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:notHelpfulArgumentativeOrBiased
INFO:birdwatch.scoring_rules:notHelpfulOffTopic
INFO:birdwatch.scoring_rules:notHelpfulSpamHarassmentOrAbuse
INFO:birdwatch.scoring_rules:notHelpfulIrrelevantSources
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculation
INFO:birdwatch.scoring_rules:notHelpfulNoteNotNeeded
INFO:birdwatch.scoring_rules:Total {note, tag} pairs where tag filter logic triggered: 109750
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.matrix_factorization:epoch 40 0.10988125205039978
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08280817419290543
INFO:birdwatch.scoring_rules:Total unique notes impacted by tag filtering: 55861
INFO:birdwatch.constants:Calling score_notes: TagFilter (v1.0) elapsed time: 4.55 secs (0.08 mins)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/scoring_rules.py, in apply_scoring_rules, at line 1099: noteColumns = noteColumns.merge(
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:Applying scoring rule: TagFilter (v1.0) elapsed time: 5.37 secs (0.09 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: CRHSuperThreshold (v1.0)
INFO:birdwatch.constants:Calling score_notes: CRHSuperThreshold (v1.0) elapsed time: 0.19 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: CRHSuperThreshold (v1.0) elapsed time: 0.93 secs (0.02 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: ElevatedCRHInertia (v1.0)
INFO:birdwatch.constants:Calling score_notes: ElevatedCRHInertia (v1.0) elapsed time: 1.27 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: ElevatedCRHInertia (v1.0) elapsed time: 1.94 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterIncorrect (v1.0)
INFO:birdwatch.scorer: Ratings after group filter: 1008102
INFO:birdwatch.scorer:MFGroupScorer_10 Filter input elapsed time: 43.35 secs (0.72 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 517761, Num Unique Notes Rated: 45869, Num Unique Raters: 9603
INFO:birdwatch.scorer:MFGroupScorer_10 Prepare ratings elapsed time: 0.33 secs (0.01 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
INFO:birdwatch.helpfulness_scores:Unique Raters: 4807
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 31122
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 5471
INFO:birdwatch.scoring_rules:Total notes impacted by incorrect filtering: 12312
INFO:birdwatch.constants:Calling score_notes: FilterIncorrect (v1.0) elapsed time: 2.44 secs (0.04 mins)
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 4807
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 352239
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 352239
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 4807, Notes: 45758
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 7.697867039643341
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 73.27626378198461
INFO:birdwatch.matrix_factorization:Correcting loss function to simulate rating per note loss ratio = 7.839522009181745
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.matrix_factorization:epoch 0 0.15036438405513763
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1034027710556984
INFO:birdwatch.constants:Applying scoring rule: FilterIncorrect (v1.0) elapsed time: 3.11 secs (0.05 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLowDiligence (v1.0)
INFO:birdwatch.matrix_factorization:epoch 20 0.09833598136901855
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06338489800691605
INFO:birdwatch.matrix_factorization:epoch 40 0.09538590162992477
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06136326491832733
INFO:birdwatch.matrix_factorization:epoch 60 0.09507506340742111
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.061440546065568924
INFO:birdwatch.matrix_factorization:epoch 80 0.09503751993179321
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06147640198469162
INFO:birdwatch.matrix_factorization:Num epochs: 81
INFO:birdwatch.matrix_factorization:epoch 81 0.09503751993179321
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06147640198469162
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1765308380126953
INFO:birdwatch.scorer:MFGroupScorer_10 Final helpfulness-filtered MF elapsed time: 2.55 secs (0.04 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_10 final scoring, about to call diligence with 352239 final round ratings.
INFO:birdwatch.scoring_rules:Total notes impacted by low diligence filtering: 109589
INFO:birdwatch.constants:Calling score_notes: FilterLowDiligence (v1.0) elapsed time: 2.25 secs (0.04 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:467: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
noteInitState[c.internalNoteInterceptKey] = noteInitState[c.internalNoteInterceptRound2Key]
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:470: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = raterInitState[c.internalRaterInterceptRound2Key]
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
noteId internalNoteIntercept internalNoteFactor1 \
0 1653111205429403666 1.751741 -0.175008
1 1661796202554294297 -0.418910 3.891872
2 1715444846586929540 -1.264926 -0.703209
3 1738503882395844941 -6.175349 -0.802291
4 1738528131655323997 -3.381059 -0.230357
... ... ... ...
44431 1781302829556130237 0.454817 -1.483116
44432 1870681504772186619 1.066034 -2.238522
44433 1830682877715247309 -0.247141 0.875170
44434 1736435011405181005 -0.215457 -0.906303
44435 1828123440026378402 -0.411297 -0.422157
internalNoteInterceptRound2
0 1.751741
1 -0.418910
2 -1.264926
3 -6.175349
4 -3.381059
... ...
44431 0.454817
44432 1.066034
44433 -0.247141
44434 -0.215457
44435 -0.411297
[44436 rows x 4 columns],
raterInitState:
raterParticipantId \
0 000045A5FA0CF004F68CBF2913506C37D540CF48522D33...
1 00018DBB934257251EBCEE91D0722C71B7DD592A571398...
2 00029D1FDD352D79B5073189C3F2BDF6377581F50D66C1...
3 00037E5A04D7781E19E5AAF559E14512FF17E7F76C30AF...
4 00053CDCAC04E3692F4A01305C8F3D093CCE221157D539...
... ...
31117 FFE9E0E39C0049AD113CEF0AB5178393F13B15C4E7B31C...
31118 FFF104BC8D2B5E53432FF3E605B5D5D76EDECE29AFA0F5...
31119 FFF1316D167C80F6D36C904E952D720D8E8DAE052288D1...
31120 FFF5A46494A3BDEC6FFF8A38A777E53484648B186FCD76...
31121 FFFEB058BCC25277E2662DD3E8C0506FB1B23BA4D965EA...
internalRaterIntercept internalRaterFactor1 internalRaterReputation \
0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
... ... ... ...
31117 0.275395 -1.040295 0.429025
31118 0.059025 1.722504 0.328327
31119 NaN NaN NaN
31120 NaN NaN NaN
31121 NaN NaN NaN
internalRaterInterceptRound2
0 NaN
1 NaN
2 NaN
3 NaN
4 NaN
... ...
31117 0.275395
31118 0.059025
31119 NaN
31120 NaN
31121 NaN
[31122 rows x 5 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 4807, vs. num we are initializing: 31122
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 4807
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 4807, vs. num we are initializing: 31122
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 4807
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterReputation:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 4807, vs. num we are initializing: 31122
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterReputations: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterReputations: 4807
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 45758, vs. num we are initializing: 44436
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteFactor1s: 44532
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteFactor1s: 1226
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 45758, vs. num we are initializing: 44436
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteIntercepts: 44532
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteIntercepts: 1226
INFO:birdwatch.reputation_matrix_factorization:Final scoring, initial round fitting reputation MF (equivalent to Round 2 in Prescoring - learn note factor)
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=7.466931 | time=0.0s
INFO:birdwatch.constants:Applying scoring rule: FilterLowDiligence (v1.0) elapsed time: 2.96 secs (0.05 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLargeFactor (v1.0)
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.657639 | time=0.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.617040 | time=0.8s
INFO:birdwatch.scoring_rules:Total notes impacted by large factor filtering: 338
INFO:birdwatch.constants:Calling score_notes: FilterLargeFactor (v1.0) elapsed time: 0.80 secs (0.01 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.610772 | time=1.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.609813 | time=1.6s
INFO:birdwatch.constants:Applying scoring rule: FilterLargeFactor (v1.0) elapsed time: 1.48 secs (0.02 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=2.609548 | time=2.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=2.609435 | time=2.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=200 | loss=2.609392 | time=2.6s
INFO:birdwatch.reputation_matrix_factorization:Final scoring, final round fitting reputation MF: learn just note intercept
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:505: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = savedFinalRoundPrescoringRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 4807, vs. num we are initializing: 31122
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 4807
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.590790 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.489094 | time=0.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.487533 | time=0.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=080 | loss=0.487471 | time=1.0s
INFO:birdwatch.diligence_model:Low diligence final loss: 0.4875
INFO:birdwatch.mf_base_scorer:diligenceNP cols: Index(['noteId', 'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'], dtype='object')
INFO:birdwatch.mf_base_scorer:np cols: Index(['noteId', 'noteIndex', 'internalNoteIntercept', 'internalNoteFactor1',
'internalNoteFactor1_max', 'internalNoteFactor1_median',
'internalNoteFactor1_min', 'internalNoteFactor1_refit_orig',
'internalNoteIntercept_median', 'internalNoteIntercept_refit_orig',
'ratingCount_all', 'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_10 Low Diligence Reputation Model elapsed time: 4.40 secs (0.07 mins)
INFO:birdwatch.mf_base_scorer:About to call compute_scored_notes with MFGroupScorer_10
INFO:birdwatch.matrix_factorization:epoch 40 0.109850212931633
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08277617394924164
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 494: noteStats = tagAggregates.merge(noteStats, on=c.noteIdKey, how="outer")
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:compute_scored_notes: compute tag aggregates elapsed time: 2.83 secs (0.05 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:82: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals.drop(columns_to_drop, inplace=True, axis=1)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:84: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = (
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:91: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:95: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:99: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey] = ratings_w_user_totals[
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 499: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on num_voters_interval: result=float64 expected=int64 (allowed)
INFO:birdwatch.constants:compute_scored_notes: compute incorrect aggregates elapsed time: 3.12 secs (0.05 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.75 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.16 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.84 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.66 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.67 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.82 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRHInertia (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRHInertia (v1.0) elapsed time: 1.06 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRHInertia (v1.0) elapsed time: 1.71 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: TagFilter (v1.0)
INFO:birdwatch.scoring_rules:Candidate notes prior to tag filtering: 1780829
INFO:birdwatch.scoring_rules:Checking note tags:
INFO:birdwatch.scoring_rules:notHelpfulOther
INFO:birdwatch.scoring_rules:notHelpfulIncorrect
INFO:birdwatch.scoring_rules:notHelpfulSourcesMissingOrUnreliable
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculationOrBias
INFO:birdwatch.scoring_rules:notHelpfulMissingKeyPoints
INFO:birdwatch.scoring_rules:notHelpfulOutdated
INFO:birdwatch.scoring_rules:notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:outlier filtering disabled for tag: notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:notHelpfulArgumentativeOrBiased
INFO:birdwatch.scoring_rules:notHelpfulOffTopic
INFO:birdwatch.scoring_rules:notHelpfulSpamHarassmentOrAbuse
INFO:birdwatch.scoring_rules:notHelpfulIrrelevantSources
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculation
INFO:birdwatch.scoring_rules:notHelpfulNoteNotNeeded
INFO:birdwatch.scoring_rules:Total {note, tag} pairs where tag filter logic triggered: 706
INFO:birdwatch.scoring_rules:Total unique notes impacted by tag filtering: 407
INFO:birdwatch.constants:Calling score_notes: TagFilter (v1.0) elapsed time: 3.35 secs (0.06 mins)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/scoring_rules.py, in apply_scoring_rules, at line 1099: noteColumns = noteColumns.merge(
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:Applying scoring rule: TagFilter (v1.0) elapsed time: 4.04 secs (0.07 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: CRHSuperThreshold (v1.0)
INFO:birdwatch.constants:Calling score_notes: CRHSuperThreshold (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: CRHSuperThreshold (v1.0) elapsed time: 0.83 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: ElevatedCRHInertia (v1.0)
INFO:birdwatch.constants:Calling score_notes: ElevatedCRHInertia (v1.0) elapsed time: 1.01 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: ElevatedCRHInertia (v1.0) elapsed time: 1.68 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterIncorrect (v1.0)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/pseudo_raters.py, in _add_extreme_raters_to_id_maps_and_params, at line 135: self.raterIdMapWithExtreme = pd.concat(
PandasTypeError: DataFrame concat on raterParticipantId: output=object inputs=[dtype('O'), dtype('int64')] (allowed)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/pseudo_raters.py, in _add_extreme_raters_to_id_maps_and_params, at line 151: self.raterParamsWithExtreme = pd.concat(
PandasTypeError: DataFrame concat on raterParticipantId: output=object inputs=[dtype('O'), dtype('int64')] (allowed)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/pseudo_raters.py, in _add_extreme_raters_to_id_maps_and_params, at line 135: self.raterIdMapWithExtreme = pd.concat(
PandasTypeError: DataFrame concat on raterParticipantId: output=object inputs=[dtype('O'), dtype('int64')] (allowed)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/pseudo_raters.py, in _add_extreme_raters_to_id_maps_and_params, at line 151: self.raterParamsWithExtreme = pd.concat(
PandasTypeError: DataFrame concat on raterParticipantId: output=object inputs=[dtype('O'), dtype('int64')] (allowed)
PandasTypeError: DataFrame concat on internalRaterFactor1: output=float64 inputs=[dtype('float32'), dtype('float64')] (allowed)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/pseudo_raters.py, in _add_extreme_raters_to_id_maps_and_params, at line 135: self.raterIdMapWithExtreme = pd.concat(
PandasTypeError: DataFrame concat on raterParticipantId: output=object inputs=[dtype('O'), dtype('int64')] (allowed)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/pseudo_raters.py, in _add_extreme_raters_to_id_maps_and_params, at line 151: self.raterParamsWithExtreme = pd.concat(
PandasTypeError: DataFrame concat on raterParticipantId: output=object inputs=[dtype('O'), dtype('int64')] (allowed)
PandasTypeError: DataFrame concat on internalRaterFactor1: output=float64 inputs=[dtype('float64'), dtype('float32')] (allowed)
INFO:birdwatch.constants:Pseudoraters: prepare data elapsed time: 0.55 secs (0.01 mins)
INFO:birdwatch.pseudo_raters:------------------
INFO:birdwatch.pseudo_raters:Re-scoring all notes with extra rating added: {'internalRaterIntercept': None, 'internalRaterFactor1': None, 'helpfulNum': None}
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 382560, Notes: 1226896
INFO:birdwatch.matrix_factorization:initializing notes
INFO:birdwatch.scoring_rules:Total notes impacted by incorrect filtering: 146
INFO:birdwatch.constants:Calling score_notes: FilterIncorrect (v1.0) elapsed time: 3.29 secs (0.05 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INIT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/pseudo_raters.py, in _check_note_parameters_same, at line 90: assert (noteParamsFromNewModel == self.noteParams).all().all()
PandasTypeError: Type expectation mismatch on noteId: found=bool expected=int64
INFO:birdwatch.constants:Applying scoring rule: FilterIncorrect (v1.0) elapsed time: 4.00 secs (0.07 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLowDiligence (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by low diligence filtering: 8809
INFO:birdwatch.constants:Calling score_notes: FilterLowDiligence (v1.0) elapsed time: 3.17 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLowDiligence (v1.0) elapsed time: 3.88 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLargeFactor (v1.0)
INFO:birdwatch.matrix_factorization:epoch 0 0.12860751152038574
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10203398019075394
INFO:birdwatch.scoring_rules:Total notes impacted by large factor filtering: 58
INFO:birdwatch.constants:Calling score_notes: FilterLargeFactor (v1.0) elapsed time: 0.89 secs (0.01 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLargeFactor (v1.0) elapsed time: 1.49 secs (0.02 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=0.108227 | time=266.3s
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 40.80 secs (0.68 mins)
INFO:birdwatch.mf_base_scorer:sn cols: Index(['noteId', 'ratingWeight', 'notHelpfulOtherAdjusted',
'notHelpfulIncorrectAdjusted',
'notHelpfulSourcesMissingOrUnreliableAdjusted',
'notHelpfulOpinionSpeculationOrBiasAdjusted',
'notHelpfulMissingKeyPointsAdjusted', 'notHelpfulOutdatedAdjusted',
'notHelpfulHardToUnderstandAdjusted',
'notHelpfulArgumentativeOrBiasedAdjusted', 'notHelpfulOffTopicAdjusted',
'notHelpfulSpamHarassmentOrAbuseAdjusted',
'notHelpfulIrrelevantSourcesAdjusted',
'notHelpfulOpinionSpeculationAdjusted',
'notHelpfulNoteNotNeededAdjusted', 'notHelpfulOtherAdjustedRatio',
'notHelpfulIncorrectAdjustedRatio',
'notHelpfulSourcesMissingOrUnreliableAdjustedRatio',
'notHelpfulOpinionSpeculationOrBiasAdjustedRatio',
'notHelpfulMissingKeyPointsAdjustedRatio',
'notHelpfulOutdatedAdjustedRatio',
'notHelpfulHardToUnderstandAdjustedRatio',
'notHelpfulArgumentativeOrBiasedAdjustedRatio',
'notHelpfulOffTopicAdjustedRatio',
'notHelpfulSpamHarassmentOrAbuseAdjustedRatio',
'notHelpfulIrrelevantSourcesAdjustedRatio',
'notHelpfulOpinionSpeculationAdjustedRatio',
'notHelpfulNoteNotNeededAdjustedRatio', 'helpfulOther',
'helpfulInformative', 'helpfulClear', 'helpfulEmpathetic',
'helpfulGoodSources', 'helpfulUniqueContext', 'helpfulAddressesClaim',
'helpfulImportantContext', 'helpfulUnbiasedLanguage', 'notHelpfulOther',
'notHelpfulIncorrect', 'notHelpfulSourcesMissingOrUnreliable',
'notHelpfulOpinionSpeculationOrBias', 'notHelpfulMissingKeyPoints',
'notHelpfulOutdated', 'notHelpfulHardToUnderstand',
'notHelpfulArgumentativeOrBiased', 'notHelpfulOffTopic',
'notHelpfulSpamHarassmentOrAbuse', 'notHelpfulIrrelevantSources',
'notHelpfulOpinionSpeculation', 'notHelpfulNoteNotNeeded', 'numRatings',
'noteAuthorParticipantId', 'classification', 'currentStatus',
'internalNoteIntercept', 'internalNoteFactor1',
'lowDiligenceNoteIntercept', 'internalNoteFactor1_max',
'internalNoteFactor1_median', 'internalNoteFactor1_min',
'internalNoteFactor1_refit_orig', 'internalNoteIntercept_median',
'internalNoteIntercept_refit_orig', 'ratingCount_all',
'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'notHelpfulIncorrect_interval', 'p_incorrect_user_interval',
'num_voters_interval', 'tf_idf_incorrect_interval',
'internalRatingStatus', 'internalActiveRules', 'activeFilterTags',
'crhBool', 'crnhBool', 'awaitingBool'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_13 Final compute scored notes elapsed time: 240.83 secs (4.01 mins)
INFO:birdwatch.scorer:Postprocessing output for MFGroupScorer_13
INFO:birdwatch.matrix_factorization:Num epochs: 59
INFO:birdwatch.matrix_factorization:epoch 59 0.10980002582073212
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08260970562696457
INFO:birdwatch.matrix_factorization:Global Intercept: 0.17136713862419128
INFO:birdwatch.scorer:MFExpansionPlusScorer Final helpfulness-filtered MF elapsed time: 254.85 secs (4.25 mins)
INFO:birdwatch.mf_base_scorer:In MFExpansionPlusScorer final scoring, about to call diligence with 62811117 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:epoch=130 | loss=0.108227 | time=288.7s
INFO:birdwatch.reputation_matrix_factorization:Final scoring, final round fitting reputation MF: learn just note intercept
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 599301, vs. num we are initializing: 599301
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 599301
INFO:birdwatch.matrix_factorization:Num epochs: 59
INFO:birdwatch.matrix_factorization:epoch 59 0.10976870357990265
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08257711678743362
INFO:birdwatch.matrix_factorization:Global Intercept: 0.1713782697916031
INFO:birdwatch.scorer:MFExpansionScorer Final helpfulness-filtered MF elapsed time: 255.27 secs (4.25 mins)
INFO:birdwatch.mf_base_scorer:In MFExpansionScorer final scoring, about to call diligence with 62763814 final round ratings.
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.009235 | time=1.0s
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 41.94 secs (0.70 mins)
INFO:birdwatch.mf_base_scorer:sn cols: Index(['noteId', 'ratingWeight', 'notHelpfulOtherAdjusted',
'notHelpfulIncorrectAdjusted',
'notHelpfulSourcesMissingOrUnreliableAdjusted',
'notHelpfulOpinionSpeculationOrBiasAdjusted',
'notHelpfulMissingKeyPointsAdjusted', 'notHelpfulOutdatedAdjusted',
'notHelpfulHardToUnderstandAdjusted',
'notHelpfulArgumentativeOrBiasedAdjusted', 'notHelpfulOffTopicAdjusted',
'notHelpfulSpamHarassmentOrAbuseAdjusted',
'notHelpfulIrrelevantSourcesAdjusted',
'notHelpfulOpinionSpeculationAdjusted',
'notHelpfulNoteNotNeededAdjusted', 'notHelpfulOtherAdjustedRatio',
'notHelpfulIncorrectAdjustedRatio',
'notHelpfulSourcesMissingOrUnreliableAdjustedRatio',
'notHelpfulOpinionSpeculationOrBiasAdjustedRatio',
'notHelpfulMissingKeyPointsAdjustedRatio',
'notHelpfulOutdatedAdjustedRatio',
'notHelpfulHardToUnderstandAdjustedRatio',
'notHelpfulArgumentativeOrBiasedAdjustedRatio',
'notHelpfulOffTopicAdjustedRatio',
'notHelpfulSpamHarassmentOrAbuseAdjustedRatio',
'notHelpfulIrrelevantSourcesAdjustedRatio',
'notHelpfulOpinionSpeculationAdjustedRatio',
'notHelpfulNoteNotNeededAdjustedRatio', 'helpfulOther',
'helpfulInformative', 'helpfulClear', 'helpfulEmpathetic',
'helpfulGoodSources', 'helpfulUniqueContext', 'helpfulAddressesClaim',
'helpfulImportantContext', 'helpfulUnbiasedLanguage', 'notHelpfulOther',
'notHelpfulIncorrect', 'notHelpfulSourcesMissingOrUnreliable',
'notHelpfulOpinionSpeculationOrBias', 'notHelpfulMissingKeyPoints',
'notHelpfulOutdated', 'notHelpfulHardToUnderstand',
'notHelpfulArgumentativeOrBiased', 'notHelpfulOffTopic',
'notHelpfulSpamHarassmentOrAbuse', 'notHelpfulIrrelevantSources',
'notHelpfulOpinionSpeculation', 'notHelpfulNoteNotNeeded', 'numRatings',
'noteAuthorParticipantId', 'classification', 'currentStatus',
'internalNoteIntercept', 'internalNoteFactor1',
'lowDiligenceNoteIntercept', 'internalNoteFactor1_max',
'internalNoteFactor1_median', 'internalNoteFactor1_min',
'internalNoteFactor1_refit_orig', 'internalNoteIntercept_median',
'internalNoteIntercept_refit_orig', 'ratingCount_all',
'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'notHelpfulIncorrect_interval', 'p_incorrect_user_interval',
'num_voters_interval', 'tf_idf_incorrect_interval',
'internalRatingStatus', 'internalActiveRules', 'activeFilterTags',
'crhBool', 'crnhBool', 'awaitingBool'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_10 Final compute scored notes elapsed time: 74.72 secs (1.25 mins)
INFO:birdwatch.scorer:Postprocessing output for MFGroupScorer_10
INFO:birdwatch.matrix_factorization:epoch 20 0.10987015813589096
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08298537880182266
INFO:birdwatch.scorer: Original noteScores length: 1783629
INFO:birdwatch.scorer: Final noteScores length: 116962
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in score_final, at line 1190: noteScores = noteScores.merge(
PandasTypeError: Output mismatch on numFinalRoundRatings: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_13 Postprocess output elapsed time: 73.06 secs (1.22 mins)
INFO:birdwatch.run_scoring:MFGroupScorer_9 run_scorer_parallelizable just started in parallel: loading data from shared memory.
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:467: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
noteInitState[c.internalNoteInterceptKey] = noteInitState[c.internalNoteInterceptRound2Key]
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:470: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = raterInitState[c.internalRaterInterceptRound2Key]
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
noteId ... internalNoteInterceptRound2
0 1715437541212520617 ... 1.927415
1 1722158725807378589 ... -1.758197
2 1724462438022554032 ... -0.870198
3 1724471553906131352 ... -1.076510
4 1733114336250380782 ... -1.699260
... ... ... ...
1319215 1739514358324183339 ... -0.159068
1319216 1876071888876966335 ... -0.228524
1319217 1737522200616263780 ... 0.886244
1319218 1872611622075723818 ... -0.243515
1319219 1801082722632577292 ... -0.140561
[1319220 rows x 4 columns],
raterInitState:
raterParticipantId ... internalRaterInterceptRound2
0 000011269AD6F327AED0F4086A732B4052F9D28E8791E1... ... -0.598722
1 00003B703F86036C51F4F4B4C9F77B00C92D882421DA73... ... -0.173721
2 000045A5FA0CF004F68CBF2913506C37D540CF48522D33... ... -0.653616
3 00004D45B2AFE9EA96333B280009DCC621851088264E8F... ... NaN
4 00005300B9017670433392BF6767238D54E058EC25D5C5... ... -0.194291
... ... ... ...
722507 FFFFBBAB3C66ABB4DBC2A3B486C3C673345C89B5858465... ... 0.168351
722508 FFFFC46B8555A97065DB39F7D600C8BB643F7F3EBD810E... ... -0.282261
722509 FFFFC819886B2F837503D840D59EE8321A835AAF2B5C1E... ... -0.057744
722510 FFFFD54D8094D7620A7C3E162F98198FBDBD3401A4F2FB... ... NaN
722511 FFFFFE8909485374E33854B934713713CAC93CDB50C9D0... ... -0.317479
[722512 rows x 5 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 496789, vs. num we are initializing: 722512
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.007130 | time=66.7s
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 496789
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 496789, vs. num we are initializing: 722512
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 496789
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterReputation:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 496789, vs. num we are initializing: 722512
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterReputations: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterReputations: 496789
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 1321133, vs. num we are initializing: 1319220
INFO:birdwatch.scorer: Original noteScores length: 1783629
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteFactor1s: 1262946
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteFactor1s: 58187
INFO:birdwatch.scorer: Final noteScores length: 5227
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 1321133, vs. num we are initializing: 1319220
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in score_final, at line 1190: noteScores = noteScores.merge(
PandasTypeError: Output mismatch on numFinalRoundRatings: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_10 Postprocess output elapsed time: 59.62 secs (0.99 mins)
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteIntercepts: 1262946
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteIntercepts: 58187
INFO:birdwatch.reputation_matrix_factorization:Final scoring, initial round fitting reputation MF (equivalent to Round 2 in Prescoring - learn note factor)
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=3.964743 | time=0.9s
INFO:birdwatch.run_scoring:MFGroupScorer_8 run_scorer_parallelizable just started in parallel: loading data from shared memory.
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:467: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
noteInitState[c.internalNoteInterceptKey] = noteInitState[c.internalNoteInterceptRound2Key]
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:470: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = raterInitState[c.internalRaterInterceptRound2Key]
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
noteId ... internalNoteInterceptRound2
0 1715437541212520617 ... 1.916127
1 1722158725807378589 ... -1.758119
2 1724462438022554032 ... -0.910524
3 1724471553906131352 ... -1.044411
4 1733114336250380782 ... -1.693384
... ... ... ...
1319198 1739514358324183339 ... -0.160440
1319199 1876071888876966335 ... -0.227913
1319200 1737522200616263780 ... 0.888188
1319201 1872611622075723818 ... -0.243491
1319202 1801082722632577292 ... -0.141208
[1319203 rows x 4 columns],
raterInitState:
raterParticipantId ... internalRaterInterceptRound2
0 000011269AD6F327AED0F4086A732B4052F9D28E8791E1... ... -0.599154
1 00003B703F86036C51F4F4B4C9F77B00C92D882421DA73... ... -0.173048
2 000045A5FA0CF004F68CBF2913506C37D540CF48522D33... ... -0.657185
3 00004D45B2AFE9EA96333B280009DCC621851088264E8F... ... NaN
4 00005300B9017670433392BF6767238D54E058EC25D5C5... ... -0.187659
... ... ... ...
722839 FFFFBBAB3C66ABB4DBC2A3B486C3C673345C89B5858465... ... 0.169876
722840 FFFFC46B8555A97065DB39F7D600C8BB643F7F3EBD810E... ... -0.283637
722841 FFFFC819886B2F837503D840D59EE8321A835AAF2B5C1E... ... -0.057119
722842 FFFFD54D8094D7620A7C3E162F98198FBDBD3401A4F2FB... ... NaN
722843 FFFFFE8909485374E33854B934713713CAC93CDB50C9D0... ... -0.319418
[722844 rows x 5 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 496867, vs. num we are initializing: 722844
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 496867
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 496867, vs. num we are initializing: 722844
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 496867
INFO:birdwatch.run_scoring:MFGroupScorer_9 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_9 run_scorer_parallelizable: Loading data elapsed time: 29.30 secs (0.49 mins)
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFGroupScorer_9 set to: 4
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterReputation:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 496867, vs. num we are initializing: 722844
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_9. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterReputations: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterReputations: 496867
INFO:birdwatch.matrix_factorization:epoch 40 0.10894443839788437
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08187822252511978
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 1321116, vs. num we are initializing: 1319203
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteFactor1s: 1262928
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteFactor1s: 58188
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 1321116, vs. num we are initializing: 1319203
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteIntercepts: 1262928
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteIntercepts: 58188
INFO:birdwatch.reputation_matrix_factorization:Final scoring, initial round fitting reputation MF (equivalent to Round 2 in Prescoring - learn note factor)
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=3.967510 | time=1.0s
INFO:birdwatch.run_scoring:MFGroupScorer_8 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_8 run_scorer_parallelizable: Loading data elapsed time: 29.58 secs (0.49 mins)
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFGroupScorer_8 set to: 4
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_8. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.441855 | time=50.5s
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.007113 | time=133.2s
INFO:birdwatch.scorer: Ratings after group filter: 5652192
INFO:birdwatch.scorer:MFGroupScorer_9 Filter input elapsed time: 53.26 secs (0.89 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.441232 | time=49.8s
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 5005660, Num Unique Notes Rated: 161620, Num Unique Raters: 52729
INFO:birdwatch.scorer:MFGroupScorer_9 Prepare ratings elapsed time: 3.03 secs (0.05 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.matrix_factorization:epoch 60 0.10881444066762924
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08172127604484558
INFO:birdwatch.helpfulness_scores:Unique Raters: 28554
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 90695
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 30820
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 28554
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 3198252
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 3198252
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 28554, Notes: 161453
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.scorer: Ratings after group filter: 769482
INFO:birdwatch.scorer:MFGroupScorer_8 Filter input elapsed time: 45.71 secs (0.76 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 19.80918285816925
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 112.00714435805841
INFO:birdwatch.matrix_factorization:Correcting loss function to simulate rating per note loss ratio = 19.923293240302538
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 294753, Num Unique Notes Rated: 35033, Num Unique Raters: 5227
INFO:birdwatch.scorer:MFGroupScorer_8 Prepare ratings elapsed time: 0.23 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:epoch 0 0.13769452273845673
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11265421658754349
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
INFO:birdwatch.helpfulness_scores:Unique Raters: 2677
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 22924
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 2951
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 2677
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 230235
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 230235
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 2677, Notes: 35021
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 6.574198338139973
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 86.00485618229361
INFO:birdwatch.matrix_factorization:Correcting loss function to simulate rating per note loss ratio = 6.69694819020582
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.matrix_factorization:epoch 0 0.152942955493927
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10540663450956345
INFO:birdwatch.matrix_factorization:epoch 20 0.09669956564903259
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06090006232261658
INFO:birdwatch.matrix_factorization:epoch 40 0.09332355856895447
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05876016616821289
INFO:birdwatch.matrix_factorization:epoch 60 0.09292444586753845
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05885151028633118
INFO:birdwatch.matrix_factorization:Num epochs: 79
INFO:birdwatch.matrix_factorization:epoch 79 0.0928746834397316
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05890684574842453
INFO:birdwatch.matrix_factorization:Global Intercept: 0.17319533228874207
INFO:birdwatch.scorer:MFGroupScorer_8 Final helpfulness-filtered MF elapsed time: 1.56 secs (0.03 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_8 final scoring, about to call diligence with 230235 final round ratings.
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:467: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
noteInitState[c.internalNoteInterceptKey] = noteInitState[c.internalNoteInterceptRound2Key]
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:470: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = raterInitState[c.internalRaterInterceptRound2Key]
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
noteId internalNoteIntercept internalNoteFactor1 \
0 1711478693334266247 5.038938 -0.922702
1 1713286202017607729 0.146843 2.817860
2 1719803084530946467 3.737844 0.192020
3 1720456228927606963 3.887522 -0.387876
4 1727107233727799766 -2.098484 0.107306
... ... ... ...
33811 1715792226893152494 -0.653895 0.622179
33812 1715795041388515539 -0.653920 0.626903
33813 1831661420343120067 1.035051 2.164517
33814 1732927442673607038 -0.162533 0.746689
33815 1748275272611254440 -0.196774 0.803683
internalNoteInterceptRound2
0 5.038938
1 0.146843
2 3.737844
3 3.887522
4 -2.098484
... ...
33811 -0.653895
33812 -0.653920
33813 1.035051
33814 -0.162533
33815 -0.196774
[33816 rows x 4 columns],
raterInitState:
raterParticipantId \
0 000045A5FA0CF004F68CBF2913506C37D540CF48522D33...
1 000332634A6A64C51BA706D66615B87D74D34B3465D3CD...
2 0005983E6E18862483AB372C5B61FEBC1F8A573E7701F9...
3 000A0CE0A7410288C107822B15D2B35C5E95715EA946E7...
4 00177CE102355982315EED42EADA601B04A6112E029004...
... ...
22919 FFE894CCE08EAD722CB39396FBE0AFC5E05C9C9B9E3721...
22920 FFEFEEF7E6B2DCB450856DBBB9F7EF303369C610B38A42...
22921 FFF32E6FDAD8CA20E1F78638046B1E3D95B838103AE629...
22922 FFF5A46494A3BDEC6FFF8A38A777E53484648B186FCD76...
22923 FFFEB058BCC25277E2662DD3E8C0506FB1B23BA4D965EA...
internalRaterIntercept internalRaterFactor1 internalRaterReputation \
0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 0.564228 -2.569979 0.426953
4 NaN NaN NaN
... ... ... ...
22919 NaN NaN NaN
22920 NaN NaN NaN
22921 NaN NaN NaN
22922 NaN NaN NaN
22923 NaN NaN NaN
internalRaterInterceptRound2
0 NaN
1 NaN
2 NaN
3 0.564228
4 NaN
... ...
22919 NaN
22920 NaN
22921 NaN
22922 NaN
22923 NaN
[22924 rows x 5 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 2677, vs. num we are initializing: 22924
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 2677
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 2677, vs. num we are initializing: 22924
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 2677
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterReputation:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 2677, vs. num we are initializing: 22924
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterReputations: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterReputations: 2677
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 35021, vs. num we are initializing: 33816
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteFactor1s: 33982
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteFactor1s: 1039
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 35021, vs. num we are initializing: 33816
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteIntercepts: 33982
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteIntercepts: 1039
INFO:birdwatch.reputation_matrix_factorization:Final scoring, initial round fitting reputation MF (equivalent to Round 2 in Prescoring - learn note factor)
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=9.341843 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.773442 | time=0.4s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.719257 | time=0.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.709303 | time=1.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.707230 | time=1.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=2.706447 | time=1.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=2.706050 | time=1.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=210 | loss=2.705828 | time=2.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=240 | loss=2.705698 | time=2.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=270 | loss=2.705621 | time=2.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=275 | loss=2.705611 | time=2.6s
INFO:birdwatch.reputation_matrix_factorization:Final scoring, final round fitting reputation MF: learn just note intercept
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:505: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = savedFinalRoundPrescoringRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 2677, vs. num we are initializing: 22924
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 2677
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.651682 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.509360 | time=0.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.507832 | time=0.5s
INFO:birdwatch.matrix_factorization:epoch 20 0.10029968619346619
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07119875401258469
INFO:birdwatch.reputation_matrix_factorization:epoch=085 | loss=0.507755 | time=0.7s
INFO:birdwatch.diligence_model:Low diligence final loss: 0.5078
INFO:birdwatch.mf_base_scorer:diligenceNP cols: Index(['noteId', 'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'], dtype='object')
INFO:birdwatch.mf_base_scorer:np cols: Index(['noteId', 'noteIndex', 'internalNoteIntercept', 'internalNoteFactor1',
'internalNoteFactor1_max', 'internalNoteFactor1_median',
'internalNoteFactor1_min', 'internalNoteFactor1_refit_orig',
'internalNoteIntercept_median', 'internalNoteIntercept_refit_orig',
'ratingCount_all', 'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_8 Low Diligence Reputation Model elapsed time: 3.79 secs (0.06 mins)
INFO:birdwatch.mf_base_scorer:About to call compute_scored_notes with MFGroupScorer_8
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.matrix_factorization:Num epochs: 66
INFO:birdwatch.matrix_factorization:epoch 66 0.10880712419748306
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.08169487863779068
INFO:birdwatch.matrix_factorization:epoch 40 0.09814633429050446
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06893766671419144
INFO:birdwatch.constants:Pseudo: fit all notes with raters constant elapsed time: 198.61 secs (3.31 mins)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 494: noteStats = tagAggregates.merge(noteStats, on=c.noteIdKey, how="outer")
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:compute_scored_notes: compute tag aggregates elapsed time: 2.60 secs (0.04 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:82: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals.drop(columns_to_drop, inplace=True, axis=1)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:84: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = (
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:91: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:95: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:99: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey] = ratings_w_user_totals[
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 499: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on num_voters_interval: result=float64 expected=int64 (allowed)
INFO:birdwatch.constants:compute_scored_notes: compute incorrect aggregates elapsed time: 2.76 secs (0.05 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.67 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.matrix_factorization:epoch 60 0.09791436791419983
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06869280338287354
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:Num epochs: 62
INFO:birdwatch.matrix_factorization:epoch 62 0.09791429340839386
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06869802623987198
INFO:birdwatch.matrix_factorization:Global Intercept: 0.171379953622818
INFO:birdwatch.scorer:MFGroupScorer_9 Final helpfulness-filtered MF elapsed time: 19.79 secs (0.33 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_9 final scoring, about to call diligence with 3198252 final round ratings.
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.79 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.67 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.70 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.77 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRHInertia (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRHInertia (v1.0) elapsed time: 0.99 secs (0.02 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:467: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
noteInitState[c.internalNoteInterceptKey] = noteInitState[c.internalNoteInterceptRound2Key]
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:470: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = raterInitState[c.internalRaterInterceptRound2Key]
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
noteId internalNoteIntercept internalNoteFactor1 \
0 1642506152822079490 -2.290910 1.168253
1 1644889840532566017 0.475048 2.483786
2 1644890766915796992 -0.993903 1.550431
3 1649616502188912641 -1.142338 0.081854
4 1649621727880839168 -1.210350 0.853288
... ... ... ...
160372 1835100035366682908 -0.387279 -0.196521
160373 1713350331864625656 1.318001 1.772401
160374 1836274146642153547 -0.274244 -0.647504
160375 1767562540320543193 -0.294664 -0.516813
160376 1872611622075723818 -0.430664 -0.299931
internalNoteInterceptRound2
0 -2.290910
1 0.475048
2 -0.993903
3 -1.142338
4 -1.210350
... ...
160372 -0.387279
160373 1.318001
160374 -0.274244
160375 -0.294664
160376 -0.430664
[160377 rows x 4 columns],
raterInitState:
raterParticipantId \
0 000045A5FA0CF004F68CBF2913506C37D540CF48522D33...
1 00018DBB934257251EBCEE91D0722C71B7DD592A571398...
2 0002725E706CF18C040E21F30CE2D39994513C3BB8CF58...
3 00029D1FDD352D79B5073189C3F2BDF6377581F50D66C1...
4 0002D1E11A8EA1E4B25048FA9D117406CE9EB1D3143BC9...
... ...
90690 FFFDAB98EE31EC0CC51169937F859D5B676870C6470C19...
90691 FFFEB058BCC25277E2662DD3E8C0506FB1B23BA4D965EA...
90692 FFFEB27D6E27351D14EB43777F265F694744ABB4B3B7AD...
90693 FFFEB3E291D915645E08FD13A9BFE66B5912FE45306D25...
90694 FFFF8C877BDC3CEFEFD0D4C5F0E8B4BE537F5023A1F31F...
internalRaterIntercept internalRaterFactor1 internalRaterReputation \
0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 -0.908694 -1.348517 0.311867
4 NaN NaN NaN
... ... ... ...
90690 0.138325 0.752118 0.559713
90691 NaN NaN NaN
90692 NaN NaN NaN
90693 0.122773 -0.574076 0.159022
90694 0.279652 -0.503781 0.443090
internalRaterInterceptRound2
0 NaN
1 NaN
2 NaN
3 -0.908694
4 NaN
... ...
90690 0.138325
90691 NaN
90692 NaN
90693 0.122773
90694 0.279652
[90695 rows x 5 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 28554, vs. num we are initializing: 90695
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 28554
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 28554, vs. num we are initializing: 90695
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 28554
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterReputation:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 28554, vs. num we are initializing: 90695
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterReputations: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterReputations: 28554
INFO:birdwatch.constants:Applying scoring rule: GeneralCRHInertia (v1.0) elapsed time: 1.66 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: TagFilter (v1.0)
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 161453, vs. num we are initializing: 160377
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteFactor1s: 157321
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteFactor1s: 4132
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 161453, vs. num we are initializing: 160377
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteIntercepts: 157321
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteIntercepts: 4132
INFO:birdwatch.reputation_matrix_factorization:Final scoring, initial round fitting reputation MF (equivalent to Round 2 in Prescoring - learn note factor)
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=4.821860 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.421554 | time=99.9s
INFO:birdwatch.scoring_rules:Candidate notes prior to tag filtering: 1781655
INFO:birdwatch.scoring_rules:Checking note tags:
INFO:birdwatch.scoring_rules:notHelpfulOther
INFO:birdwatch.scoring_rules:notHelpfulIncorrect
INFO:birdwatch.scoring_rules:notHelpfulSourcesMissingOrUnreliable
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculationOrBias
INFO:birdwatch.scoring_rules:notHelpfulMissingKeyPoints
INFO:birdwatch.scoring_rules:notHelpfulOutdated
INFO:birdwatch.scoring_rules:notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:outlier filtering disabled for tag: notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:notHelpfulArgumentativeOrBiased
INFO:birdwatch.scoring_rules:notHelpfulOffTopic
INFO:birdwatch.scoring_rules:notHelpfulSpamHarassmentOrAbuse
INFO:birdwatch.scoring_rules:notHelpfulIrrelevantSources
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculation
INFO:birdwatch.scoring_rules:notHelpfulNoteNotNeeded
INFO:birdwatch.scoring_rules:Total {note, tag} pairs where tag filter logic triggered: 222
INFO:birdwatch.scoring_rules:Total unique notes impacted by tag filtering: 164
INFO:birdwatch.constants:Calling score_notes: TagFilter (v1.0) elapsed time: 3.31 secs (0.06 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.315525 | time=3.0s
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/scoring_rules.py, in apply_scoring_rules, at line 1099: noteColumns = noteColumns.merge(
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:Applying scoring rule: TagFilter (v1.0) elapsed time: 4.01 secs (0.07 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: CRHSuperThreshold (v1.0)
INFO:birdwatch.constants:Calling score_notes: CRHSuperThreshold (v1.0) elapsed time: 0.16 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: CRHSuperThreshold (v1.0) elapsed time: 0.94 secs (0.02 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: ElevatedCRHInertia (v1.0)
INFO:birdwatch.constants:Calling score_notes: ElevatedCRHInertia (v1.0) elapsed time: 1.13 secs (0.02 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.287919 | time=5.9s
INFO:birdwatch.constants:Applying scoring rule: ElevatedCRHInertia (v1.0) elapsed time: 1.81 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterIncorrect (v1.0)
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.285700 | time=8.9s
INFO:birdwatch.scoring_rules:Total notes impacted by incorrect filtering: 60
INFO:birdwatch.constants:Calling score_notes: FilterIncorrect (v1.0) elapsed time: 3.17 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterIncorrect (v1.0) elapsed time: 3.94 secs (0.07 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLowDiligence (v1.0)
INFO:birdwatch.pseudo_raters:------------------
INFO:birdwatch.pseudo_raters:Re-scoring all notes with extra rating added: {'raterParticipantId': '-1', 'raterIndex': 382560, 'internalRaterIntercept': -0.44769228, 'internalRaterFactor1': -1.1232908, 'helpfulNum': 1.0}
INFO:birdwatch.reputation_matrix_factorization:epoch=115 | loss=2.285573 | time=11.3s
INFO:birdwatch.reputation_matrix_factorization:Final scoring, final round fitting reputation MF: learn just note intercept
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:505: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = savedFinalRoundPrescoringRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 28554, vs. num we are initializing: 90695
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 28554
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.355772 | time=0.0s
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 382561, Notes: 1226896
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INIT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/pseudo_raters.py, in _check_note_parameters_same, at line 90: assert (noteParamsFromNewModel == self.noteParams).all().all()
PandasTypeError: Type expectation mismatch on noteId: found=bool expected=int64
INFO:birdwatch.scoring_rules:Total notes impacted by low diligence filtering: 6909
INFO:birdwatch.constants:Calling score_notes: FilterLowDiligence (v1.0) elapsed time: 3.15 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLowDiligence (v1.0) elapsed time: 3.95 secs (0.07 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLargeFactor (v1.0)
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.340458 | time=3.5s
INFO:birdwatch.scoring_rules:Total notes impacted by large factor filtering: 86
INFO:birdwatch.constants:Calling score_notes: FilterLargeFactor (v1.0) elapsed time: 0.95 secs (0.02 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.420896 | time=98.6s
INFO:birdwatch.constants:Applying scoring rule: FilterLargeFactor (v1.0) elapsed time: 1.66 secs (0.03 mins)
INFO:birdwatch.matrix_factorization:epoch 0 0.1583910435438156
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.12053129076957703
INFO:birdwatch.reputation_matrix_factorization:epoch=055 | loss=0.340288 | time=6.3s
INFO:birdwatch.diligence_model:Low diligence final loss: 0.3403
INFO:birdwatch.mf_base_scorer:diligenceNP cols: Index(['noteId', 'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'], dtype='object')
INFO:birdwatch.mf_base_scorer:np cols: Index(['noteId', 'noteIndex', 'internalNoteIntercept', 'internalNoteFactor1',
'internalNoteFactor1_max', 'internalNoteFactor1_median',
'internalNoteFactor1_min', 'internalNoteFactor1_refit_orig',
'internalNoteIntercept_median', 'internalNoteIntercept_refit_orig',
'ratingCount_all', 'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_9 Low Diligence Reputation Model elapsed time: 22.60 secs (0.38 mins)
INFO:birdwatch.mf_base_scorer:About to call compute_scored_notes with MFGroupScorer_9
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=0.007112 | time=201.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=0.007112 | time=201.8s
INFO:birdwatch.helpfulness_model:Helpfulness reputation loss: 0.0071
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/reputation_scorer.py, in _score_notes_and_users, at line 187: noteStats = noteStats.merge(noteStatusHistory[[c.noteIdKey]].drop_duplicates(), how="outer")
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.scorer:Postprocessing output for ReputationScorer
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 494: noteStats = tagAggregates.merge(noteStats, on=c.noteIdKey, how="outer")
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:compute_scored_notes: compute tag aggregates elapsed time: 10.36 secs (0.17 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:82: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals.drop(columns_to_drop, inplace=True, axis=1)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:84: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = (
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:91: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:95: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:99: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey] = ratings_w_user_totals[
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 499: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on num_voters_interval: result=float64 expected=int64 (allowed)
INFO:birdwatch.constants:compute_scored_notes: compute incorrect aggregates elapsed time: 9.60 secs (0.16 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.74 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.16 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.86 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.04 secs (0.00 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.420391 | time=147.6s
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.73 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.66 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.12 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.80 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRHInertia (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRHInertia (v1.0) elapsed time: 0.99 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRHInertia (v1.0) elapsed time: 1.65 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: TagFilter (v1.0)
INFO:birdwatch.scoring_rules:Candidate notes prior to tag filtering: 1777437
INFO:birdwatch.scoring_rules:Checking note tags:
INFO:birdwatch.scoring_rules:notHelpfulOther
INFO:birdwatch.scoring_rules:notHelpfulIncorrect
INFO:birdwatch.scoring_rules:notHelpfulSourcesMissingOrUnreliable
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculationOrBias
INFO:birdwatch.scoring_rules:notHelpfulMissingKeyPoints
INFO:birdwatch.scoring_rules:notHelpfulOutdated
INFO:birdwatch.scoring_rules:notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:outlier filtering disabled for tag: notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:notHelpfulArgumentativeOrBiased
INFO:birdwatch.scoring_rules:notHelpfulOffTopic
INFO:birdwatch.scoring_rules:notHelpfulSpamHarassmentOrAbuse
INFO:birdwatch.scoring_rules:notHelpfulIrrelevantSources
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculation
INFO:birdwatch.scoring_rules:notHelpfulNoteNotNeeded
INFO:birdwatch.scoring_rules:Total {note, tag} pairs where tag filter logic triggered: 12206
INFO:birdwatch.scoring_rules:Total unique notes impacted by tag filtering: 6395
INFO:birdwatch.constants:Calling score_notes: TagFilter (v1.0) elapsed time: 3.26 secs (0.05 mins)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/scoring_rules.py, in apply_scoring_rules, at line 1099: noteColumns = noteColumns.merge(
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:Applying scoring rule: TagFilter (v1.0) elapsed time: 4.00 secs (0.07 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: CRHSuperThreshold (v1.0)
INFO:birdwatch.constants:Calling score_notes: CRHSuperThreshold (v1.0) elapsed time: 0.16 secs (0.00 mins)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 41.58 secs (0.69 mins)
INFO:birdwatch.constants:Applying scoring rule: CRHSuperThreshold (v1.0) elapsed time: 0.86 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: ElevatedCRHInertia (v1.0)
INFO:birdwatch.mf_base_scorer:sn cols: Index(['noteId', 'ratingWeight', 'notHelpfulOtherAdjusted',
'notHelpfulIncorrectAdjusted',
'notHelpfulSourcesMissingOrUnreliableAdjusted',
'notHelpfulOpinionSpeculationOrBiasAdjusted',
'notHelpfulMissingKeyPointsAdjusted', 'notHelpfulOutdatedAdjusted',
'notHelpfulHardToUnderstandAdjusted',
'notHelpfulArgumentativeOrBiasedAdjusted', 'notHelpfulOffTopicAdjusted',
'notHelpfulSpamHarassmentOrAbuseAdjusted',
'notHelpfulIrrelevantSourcesAdjusted',
'notHelpfulOpinionSpeculationAdjusted',
'notHelpfulNoteNotNeededAdjusted', 'notHelpfulOtherAdjustedRatio',
'notHelpfulIncorrectAdjustedRatio',
'notHelpfulSourcesMissingOrUnreliableAdjustedRatio',
'notHelpfulOpinionSpeculationOrBiasAdjustedRatio',
'notHelpfulMissingKeyPointsAdjustedRatio',
'notHelpfulOutdatedAdjustedRatio',
'notHelpfulHardToUnderstandAdjustedRatio',
'notHelpfulArgumentativeOrBiasedAdjustedRatio',
'notHelpfulOffTopicAdjustedRatio',
'notHelpfulSpamHarassmentOrAbuseAdjustedRatio',
'notHelpfulIrrelevantSourcesAdjustedRatio',
'notHelpfulOpinionSpeculationAdjustedRatio',
'notHelpfulNoteNotNeededAdjustedRatio', 'helpfulOther',
'helpfulInformative', 'helpfulClear', 'helpfulEmpathetic',
'helpfulGoodSources', 'helpfulUniqueContext', 'helpfulAddressesClaim',
'helpfulImportantContext', 'helpfulUnbiasedLanguage', 'notHelpfulOther',
'notHelpfulIncorrect', 'notHelpfulSourcesMissingOrUnreliable',
'notHelpfulOpinionSpeculationOrBias', 'notHelpfulMissingKeyPoints',
'notHelpfulOutdated', 'notHelpfulHardToUnderstand',
'notHelpfulArgumentativeOrBiased', 'notHelpfulOffTopic',
'notHelpfulSpamHarassmentOrAbuse', 'notHelpfulIrrelevantSources',
'notHelpfulOpinionSpeculation', 'notHelpfulNoteNotNeeded', 'numRatings',
'noteAuthorParticipantId', 'classification', 'currentStatus',
'internalNoteIntercept', 'internalNoteFactor1',
'lowDiligenceNoteIntercept', 'internalNoteFactor1_max',
'internalNoteFactor1_median', 'internalNoteFactor1_min',
'internalNoteFactor1_refit_orig', 'internalNoteIntercept_median',
'internalNoteIntercept_refit_orig', 'ratingCount_all',
'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'notHelpfulIncorrect_interval', 'p_incorrect_user_interval',
'num_voters_interval', 'tf_idf_incorrect_interval',
'internalRatingStatus', 'internalActiveRules', 'activeFilterTags',
'crhBool', 'crnhBool', 'awaitingBool'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_8 Final compute scored notes elapsed time: 73.67 secs (1.23 mins)
INFO:birdwatch.scorer:Postprocessing output for MFGroupScorer_8
INFO:birdwatch.constants:Calling score_notes: ElevatedCRHInertia (v1.0) elapsed time: 0.97 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: ElevatedCRHInertia (v1.0) elapsed time: 1.65 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterIncorrect (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by incorrect filtering: 2086
INFO:birdwatch.constants:Calling score_notes: FilterIncorrect (v1.0) elapsed time: 2.92 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterIncorrect (v1.0) elapsed time: 3.61 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLowDiligence (v1.0)
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.419713 | time=146.2s
INFO:birdwatch.scoring_rules:Total notes impacted by low diligence filtering: 31685
INFO:birdwatch.constants:Calling score_notes: FilterLowDiligence (v1.0) elapsed time: 3.13 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLowDiligence (v1.0) elapsed time: 3.85 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLargeFactor (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by large factor filtering: 41
INFO:birdwatch.constants:Calling score_notes: FilterLargeFactor (v1.0) elapsed time: 0.81 secs (0.01 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLargeFactor (v1.0) elapsed time: 1.51 secs (0.03 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=105 | loss=2.420346 | time=171.2s
INFO:birdwatch.reputation_matrix_factorization:Final scoring, final round fitting reputation MF: learn just note intercept
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:505: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = savedFinalRoundPrescoringRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 496789, vs. num we are initializing: 722512
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 496789
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.256877 | time=0.7s
INFO:birdwatch.matrix_factorization:epoch 20 0.13233225047588348
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10279327630996704
INFO:birdwatch.reputation_matrix_factorization:epoch=105 | loss=2.419666 | time=168.6s
INFO:birdwatch.reputation_matrix_factorization:Final scoring, final round fitting reputation MF: learn just note intercept
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:505: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = savedFinalRoundPrescoringRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 496867, vs. num we are initializing: 722844
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 496867
INFO:birdwatch.scorer: Original noteScores length: 1783629
INFO:birdwatch.scorer: Final noteScores length: 1419547
INFO:birdwatch.scorer:ReputationScorer Postprocess output elapsed time: 60.04 secs (1.00 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.256756 | time=0.7s
INFO:birdwatch.run_scoring:MFGroupScorer_7 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 44.59 secs (0.74 mins)
INFO:birdwatch.mf_base_scorer:sn cols: Index(['noteId', 'ratingWeight', 'notHelpfulOtherAdjusted',
'notHelpfulIncorrectAdjusted',
'notHelpfulSourcesMissingOrUnreliableAdjusted',
'notHelpfulOpinionSpeculationOrBiasAdjusted',
'notHelpfulMissingKeyPointsAdjusted', 'notHelpfulOutdatedAdjusted',
'notHelpfulHardToUnderstandAdjusted',
'notHelpfulArgumentativeOrBiasedAdjusted', 'notHelpfulOffTopicAdjusted',
'notHelpfulSpamHarassmentOrAbuseAdjusted',
'notHelpfulIrrelevantSourcesAdjusted',
'notHelpfulOpinionSpeculationAdjusted',
'notHelpfulNoteNotNeededAdjusted', 'notHelpfulOtherAdjustedRatio',
'notHelpfulIncorrectAdjustedRatio',
'notHelpfulSourcesMissingOrUnreliableAdjustedRatio',
'notHelpfulOpinionSpeculationOrBiasAdjustedRatio',
'notHelpfulMissingKeyPointsAdjustedRatio',
'notHelpfulOutdatedAdjustedRatio',
'notHelpfulHardToUnderstandAdjustedRatio',
'notHelpfulArgumentativeOrBiasedAdjustedRatio',
'notHelpfulOffTopicAdjustedRatio',
'notHelpfulSpamHarassmentOrAbuseAdjustedRatio',
'notHelpfulIrrelevantSourcesAdjustedRatio',
'notHelpfulOpinionSpeculationAdjustedRatio',
'notHelpfulNoteNotNeededAdjustedRatio', 'helpfulOther',
'helpfulInformative', 'helpfulClear', 'helpfulEmpathetic',
'helpfulGoodSources', 'helpfulUniqueContext', 'helpfulAddressesClaim',
'helpfulImportantContext', 'helpfulUnbiasedLanguage', 'notHelpfulOther',
'notHelpfulIncorrect', 'notHelpfulSourcesMissingOrUnreliable',
'notHelpfulOpinionSpeculationOrBias', 'notHelpfulMissingKeyPoints',
'notHelpfulOutdated', 'notHelpfulHardToUnderstand',
'notHelpfulArgumentativeOrBiased', 'notHelpfulOffTopic',
'notHelpfulSpamHarassmentOrAbuse', 'notHelpfulIrrelevantSources',
'notHelpfulOpinionSpeculation', 'notHelpfulNoteNotNeeded', 'numRatings',
'noteAuthorParticipantId', 'classification', 'currentStatus',
'internalNoteIntercept', 'internalNoteFactor1',
'lowDiligenceNoteIntercept', 'internalNoteFactor1_max',
'internalNoteFactor1_median', 'internalNoteFactor1_min',
'internalNoteFactor1_refit_orig', 'internalNoteIntercept_median',
'internalNoteIntercept_refit_orig', 'ratingCount_all',
'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'notHelpfulIncorrect_interval', 'p_incorrect_user_interval',
'num_voters_interval', 'tf_idf_incorrect_interval',
'internalRatingStatus', 'internalActiveRules', 'activeFilterTags',
'crhBool', 'crnhBool', 'awaitingBool'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_9 Final compute scored notes elapsed time: 95.26 secs (1.59 mins)
INFO:birdwatch.scorer:Postprocessing output for MFGroupScorer_9
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.250742 | time=46.9s
INFO:birdwatch.run_scoring:MFGroupScorer_7 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_7 run_scorer_parallelizable: Loading data elapsed time: 29.96 secs (0.50 mins)
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFGroupScorer_7 set to: 4
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_7. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.scorer: Original noteScores length: 1783629
INFO:birdwatch.scorer: Final noteScores length: 818
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in score_final, at line 1190: noteScores = noteScores.merge(
PandasTypeError: Output mismatch on numFinalRoundRatings: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_8 Postprocess output elapsed time: 72.91 secs (1.22 mins)
INFO:birdwatch.run_scoring:MFGroupScorer_6 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.250463 | time=45.8s
INFO:birdwatch.matrix_factorization:epoch 40 0.13123254477977753
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10156343877315521
INFO:birdwatch.reputation_matrix_factorization:epoch=045 | loss=0.250693 | time=70.5s
INFO:birdwatch.diligence_model:Low diligence final loss: 0.2507
INFO:birdwatch.mf_base_scorer:diligenceNP cols: Index(['noteId', 'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'], dtype='object')
INFO:birdwatch.mf_base_scorer:np cols: Index(['noteId', 'noteIndex', 'internalNoteIntercept', 'internalNoteFactor1',
'internalNoteFactor1_max', 'internalNoteFactor1_median',
'internalNoteFactor1_min', 'internalNoteFactor1_refit_orig',
'internalNoteIntercept_median', 'internalNoteIntercept_refit_orig',
'ratingCount_all', 'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'],
dtype='object')
INFO:birdwatch.scorer:MFExpansionPlusScorer Low Diligence Reputation Model elapsed time: 335.86 secs (5.60 mins)
INFO:birdwatch.mf_base_scorer:About to call compute_scored_notes with MFExpansionPlusScorer
INFO:birdwatch.reputation_matrix_factorization:epoch=045 | loss=0.250411 | time=68.5s
INFO:birdwatch.diligence_model:Low diligence final loss: 0.2504
INFO:birdwatch.mf_base_scorer:diligenceNP cols: Index(['noteId', 'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'], dtype='object')
INFO:birdwatch.mf_base_scorer:np cols: Index(['noteId', 'noteIndex', 'internalNoteIntercept', 'internalNoteFactor1',
'internalNoteFactor1_max', 'internalNoteFactor1_median',
'internalNoteFactor1_min', 'internalNoteFactor1_refit_orig',
'internalNoteIntercept_median', 'internalNoteIntercept_refit_orig',
'ratingCount_all', 'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'],
dtype='object')
INFO:birdwatch.scorer:MFExpansionScorer Low Diligence Reputation Model elapsed time: 332.26 secs (5.54 mins)
INFO:birdwatch.mf_base_scorer:About to call compute_scored_notes with MFExpansionScorer
INFO:birdwatch.run_scoring:MFGroupScorer_6 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_6 run_scorer_parallelizable: Loading data elapsed time: 28.64 secs (0.48 mins)
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFGroupScorer_6 set to: 4
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_6. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.scorer: Ratings after group filter: 1789121
INFO:birdwatch.scorer:MFGroupScorer_7 Filter input elapsed time: 44.24 secs (0.74 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 1270048, Num Unique Notes Rated: 83141, Num Unique Raters: 29463
INFO:birdwatch.scorer:MFGroupScorer_7 Prepare ratings elapsed time: 0.63 secs (0.01 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
INFO:birdwatch.helpfulness_scores:Unique Raters: 12518
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 57414
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 14801
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 12518
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 889049
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 889049
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 12518, Notes: 83062
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 10.703438395415473
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 71.021648825691
INFO:birdwatch.matrix_factorization:Correcting loss function to simulate rating per note loss ratio = 10.875813615837979
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.matrix_factorization:epoch 0 0.1511508822441101
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10870592296123505
INFO:birdwatch.matrix_factorization:epoch 20 0.11111214011907578
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07926967740058899
INFO:birdwatch.matrix_factorization:epoch 40 0.10906527191400528
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07741215825080872
INFO:birdwatch.matrix_factorization:epoch 60 0.10881809890270233
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07724964618682861
INFO:birdwatch.matrix_factorization:Num epochs: 75
INFO:birdwatch.matrix_factorization:epoch 75 0.10878925025463104
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07723891735076904
INFO:birdwatch.matrix_factorization:Global Intercept: 0.18187516927719116
INFO:birdwatch.scorer:MFGroupScorer_7 Final helpfulness-filtered MF elapsed time: 5.60 secs (0.09 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_7 final scoring, about to call diligence with 889049 final round ratings.
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:467: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
noteInitState[c.internalNoteInterceptKey] = noteInitState[c.internalNoteInterceptRound2Key]
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:470: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = raterInitState[c.internalRaterInterceptRound2Key]
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
noteId ... internalNoteInterceptRound2
0 1783356907102572640 ... 0.408297
1 1817651698652926356 ... -1.424548
2 1819455029834555469 ... -1.252842
3 1819460608976118232 ... 2.326639
4 1832658971833806987 ... 0.454524
... ... ... ...
81268 1815846943219757100 ... -0.247081
81269 1835317627482243467 ... -0.315699
81270 1761711989527650551 ... -0.393296
81271 1739385025395569106 ... 0.560137
81272 1774629591619096646 ... -0.301313
[81273 rows x 4 columns],
raterInitState:
raterParticipantId ... internalRaterInterceptRound2
0 000045A5FA0CF004F68CBF2913506C37D540CF48522D33... ... NaN
1 0001C21FD89AC65310D4D74174C0986CDF457DA24DADAB... ... -0.027743
2 00029D1FDD352D79B5073189C3F2BDF6377581F50D66C1... ... NaN
3 0003E67BB62E658363186A00B13637CF1A58748C4E4ECE... ... -0.171895
4 00053CDCAC04E3692F4A01305C8F3D093CCE221157D539... ... NaN
... ... ... ...
57409 FFF7636C99E1370B663778061CD0AF5458555FDA579F88... ... NaN
57410 FFFA43EFB0AAB3BFD273666FF123BFE69D863B9A2F5E44... ... NaN
57411 FFFBC05DB8408BB532985642C4DE00EC619B062CB60E2E... ... -0.155000
57412 FFFC011F23086D8153F0A3FF336F33EE80521EC35F9ACD... ... NaN
57413 FFFDAB98EE31EC0CC51169937F859D5B676870C6470C19... ... NaN
[57414 rows x 5 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 12518, vs. num we are initializing: 57414
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 12518
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 12518, vs. num we are initializing: 57414
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 12518
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterReputation:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 12518, vs. num we are initializing: 57414
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterReputations: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterReputations: 12518
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 83062, vs. num we are initializing: 81273
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteFactor1s: 81100
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteFactor1s: 1962
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 83062, vs. num we are initializing: 81273
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteIntercepts: 81100
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteIntercepts: 1962
INFO:birdwatch.reputation_matrix_factorization:Final scoring, initial round fitting reputation MF (equivalent to Round 2 in Prescoring - learn note factor)
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=5.753833 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.885844 | time=0.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.854939 | time=1.6s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.851777 | time=2.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.851458 | time=3.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=140 | loss=2.851408 | time=3.7s
INFO:birdwatch.reputation_matrix_factorization:Final scoring, final round fitting reputation MF: learn just note intercept
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:505: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = savedFinalRoundPrescoringRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 12518, vs. num we are initializing: 57414
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 12518
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.543244 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.476768 | time=0.8s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.475740 | time=1.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.475706 | time=1.9s
INFO:birdwatch.diligence_model:Low diligence final loss: 0.4757
INFO:birdwatch.mf_base_scorer:diligenceNP cols: Index(['noteId', 'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'], dtype='object')
INFO:birdwatch.mf_base_scorer:np cols: Index(['noteId', 'noteIndex', 'internalNoteIntercept', 'internalNoteFactor1',
'internalNoteFactor1_max', 'internalNoteFactor1_median',
'internalNoteFactor1_min', 'internalNoteFactor1_refit_orig',
'internalNoteIntercept_median', 'internalNoteIntercept_refit_orig',
'ratingCount_all', 'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_7 Low Diligence Reputation Model elapsed time: 7.30 secs (0.12 mins)
INFO:birdwatch.mf_base_scorer:About to call compute_scored_notes with MFGroupScorer_7
INFO:birdwatch.scorer: Original noteScores length: 1783629
INFO:birdwatch.scorer: Final noteScores length: 48338
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in score_final, at line 1190: noteScores = noteScores.merge(
PandasTypeError: Output mismatch on numFinalRoundRatings: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_9 Postprocess output elapsed time: 74.52 secs (1.24 mins)
INFO:birdwatch.run_scoring:MFGroupScorer_5 run_scorer_parallelizable just started in parallel: loading data from shared memory.
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 494: noteStats = tagAggregates.merge(noteStats, on=c.noteIdKey, how="outer")
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:compute_scored_notes: compute tag aggregates elapsed time: 4.07 secs (0.07 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:82: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals.drop(columns_to_drop, inplace=True, axis=1)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:84: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = (
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:91: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:95: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:99: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey] = ratings_w_user_totals[
INFO:birdwatch.matrix_factorization:epoch 60 0.13106535375118256
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10125327855348587
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 499: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on num_voters_interval: result=float64 expected=int64 (allowed)
INFO:birdwatch.constants:compute_scored_notes: compute incorrect aggregates elapsed time: 3.57 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.71 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.13 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.83 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.66 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.73 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRHInertia (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRHInertia (v1.0) elapsed time: 0.99 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRHInertia (v1.0) elapsed time: 1.62 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: TagFilter (v1.0)
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scoring_rules:Candidate notes prior to tag filtering: 1778293
INFO:birdwatch.scoring_rules:Checking note tags:
INFO:birdwatch.scoring_rules:notHelpfulOther
INFO:birdwatch.scoring_rules:notHelpfulIncorrect
INFO:birdwatch.scoring_rules:notHelpfulSourcesMissingOrUnreliable
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculationOrBias
INFO:birdwatch.scoring_rules:notHelpfulMissingKeyPoints
INFO:birdwatch.scoring_rules:notHelpfulOutdated
INFO:birdwatch.scoring_rules:notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:outlier filtering disabled for tag: notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:notHelpfulArgumentativeOrBiased
INFO:birdwatch.scoring_rules:notHelpfulOffTopic
INFO:birdwatch.scoring_rules:notHelpfulSpamHarassmentOrAbuse
INFO:birdwatch.scoring_rules:notHelpfulIrrelevantSources
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculation
INFO:birdwatch.scoring_rules:notHelpfulNoteNotNeeded
INFO:birdwatch.scoring_rules:Total {note, tag} pairs where tag filter logic triggered: 4697
INFO:birdwatch.scoring_rules:Total unique notes impacted by tag filtering: 2504
INFO:birdwatch.constants:Calling score_notes: TagFilter (v1.0) elapsed time: 3.11 secs (0.05 mins)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/scoring_rules.py, in apply_scoring_rules, at line 1099: noteColumns = noteColumns.merge(
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:Applying scoring rule: TagFilter (v1.0) elapsed time: 3.78 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: CRHSuperThreshold (v1.0)
INFO:birdwatch.constants:Calling score_notes: CRHSuperThreshold (v1.0) elapsed time: 0.14 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: CRHSuperThreshold (v1.0) elapsed time: 0.81 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: ElevatedCRHInertia (v1.0)
INFO:birdwatch.constants:Calling score_notes: ElevatedCRHInertia (v1.0) elapsed time: 0.99 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: ElevatedCRHInertia (v1.0) elapsed time: 1.66 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterIncorrect (v1.0)
INFO:birdwatch.scorer: Ratings after group filter: 5575831
INFO:birdwatch.scorer:MFGroupScorer_6 Filter input elapsed time: 47.55 secs (0.79 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.scoring_rules:Total notes impacted by incorrect filtering: 730
INFO:birdwatch.constants:Calling score_notes: FilterIncorrect (v1.0) elapsed time: 2.92 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterIncorrect (v1.0) elapsed time: 3.59 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLowDiligence (v1.0)
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 4810765, Num Unique Notes Rated: 214739, Num Unique Raters: 40001
INFO:birdwatch.scorer:MFGroupScorer_6 Prepare ratings elapsed time: 2.78 secs (0.05 mins)
INFO:birdwatch.scoring_rules:Total notes impacted by low diligence filtering: 20069
INFO:birdwatch.constants:Calling score_notes: FilterLowDiligence (v1.0) elapsed time: 2.89 secs (0.05 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
INFO:birdwatch.constants:Applying scoring rule: FilterLowDiligence (v1.0) elapsed time: 3.54 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLargeFactor (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by large factor filtering: 98
INFO:birdwatch.constants:Calling score_notes: FilterLargeFactor (v1.0) elapsed time: 0.87 secs (0.01 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLargeFactor (v1.0) elapsed time: 1.50 secs (0.03 mins)
INFO:birdwatch.run_scoring:MFGroupScorer_5 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_5 run_scorer_parallelizable: Loading data elapsed time: 27.43 secs (0.46 mins)
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFGroupScorer_5 set to: 4
INFO:birdwatch.helpfulness_scores:Unique Raters: 22064
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 96153
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 23491
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_5. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 22064
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 3035279
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 3035279
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 22064, Notes: 213702
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 14.203325191154036
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 137.5670322697607
INFO:birdwatch.matrix_factorization:Correcting loss function to simulate rating per note loss ratio = 14.27394280656491
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.matrix_factorization:epoch 0 0.12733842432498932
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.09110958874225616
INFO:birdwatch.matrix_factorization:epoch 20 0.09962290525436401
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06903161853551865
INFO:birdwatch.matrix_factorization:epoch 40 0.09806198626756668
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06802837550640106
INFO:birdwatch.matrix_factorization:epoch 60 0.09787201136350632
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06780334562063217
INFO:birdwatch.matrix_factorization:Num epochs: 79
INFO:birdwatch.matrix_factorization:epoch 79 0.09784702211618423
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06776903569698334
INFO:birdwatch.matrix_factorization:Global Intercept: 0.17027948796749115
INFO:birdwatch.scorer:MFGroupScorer_6 Final helpfulness-filtered MF elapsed time: 21.53 secs (0.36 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_6 final scoring, about to call diligence with 3035279 final round ratings.
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:467: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
noteInitState[c.internalNoteInterceptKey] = noteInitState[c.internalNoteInterceptRound2Key]
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:470: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = raterInitState[c.internalRaterInterceptRound2Key]
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
noteId internalNoteIntercept internalNoteFactor1 \
0 1699159156060475887 0.080400 1.458658
1 1708036258310607099 -1.405261 2.748523
2 1708634843616248157 -1.419548 3.016051
3 1708698407043252372 1.965857 0.520041
4 1708722796358963422 -1.201522 3.183873
... ... ... ...
212397 1749913089628152293 0.975825 1.941516
212398 1773318217337049283 -0.334301 -0.556813
212399 1703939069246402796 -0.199138 0.891681
212400 1872283842301583792 1.159355 -2.065604
212401 1872298791140782443 -0.342290 0.847621
internalNoteInterceptRound2
0 0.080400
1 -1.405261
2 -1.419548
3 1.965857
4 -1.201522
... ...
212397 0.975825
212398 -0.334301
212399 -0.199138
212400 1.159355
212401 -0.342290
[212402 rows x 4 columns],
raterInitState:
raterParticipantId \
0 000045A5FA0CF004F68CBF2913506C37D540CF48522D33...
1 00018DBB934257251EBCEE91D0722C71B7DD592A571398...
2 0002188E5ED3028646C97CBE9ADCD12CB5B8BFAF8819BD...
3 0002725E706CF18C040E21F30CE2D39994513C3BB8CF58...
4 00029D1FDD352D79B5073189C3F2BDF6377581F50D66C1...
... ...
96148 FFFDAB98EE31EC0CC51169937F859D5B676870C6470C19...
96149 FFFEB058BCC25277E2662DD3E8C0506FB1B23BA4D965EA...
96150 FFFEB27D6E27351D14EB43777F265F694744ABB4B3B7AD...
96151 FFFF0C7BF4089C6436CAB332B309A1A81C21E11CD61CE4...
96152 FFFFAB2FDBC1968F4CFE97A86D88963D702B636365B6CD...
internalRaterIntercept internalRaterFactor1 internalRaterReputation \
0 NaN NaN NaN
1 NaN NaN NaN
2 -0.002118 -2.059390 0.186737
3 NaN NaN NaN
4 NaN NaN NaN
... ... ... ...
96148 NaN NaN NaN
96149 NaN NaN NaN
96150 NaN NaN NaN
96151 NaN NaN NaN
96152 -0.152272 -0.288305 0.448480
internalRaterInterceptRound2
0 NaN
1 NaN
2 -0.002118
3 NaN
4 NaN
... ...
96148 NaN
96149 NaN
96150 NaN
96151 NaN
96152 -0.152272
[96153 rows x 5 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 22064, vs. num we are initializing: 96153
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 22064
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 22064, vs. num we are initializing: 96153
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 22064
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterReputation:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 22064, vs. num we are initializing: 96153
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterReputations: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterReputations: 22064
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 213702, vs. num we are initializing: 212402
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteFactor1s: 207350
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteFactor1s: 6352
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 213702, vs. num we are initializing: 212402
INFO:birdwatch.matrix_factorization:Num epochs: 79
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteIntercepts: 207350
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteIntercepts: 6352
INFO:birdwatch.reputation_matrix_factorization:Final scoring, initial round fitting reputation MF (equivalent to Round 2 in Prescoring - learn note factor)
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=5.528307 | time=0.0s
INFO:birdwatch.matrix_factorization:epoch 79 0.1310441642999649
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1012219786643982
INFO:birdwatch.constants:Pseudo: fit all notes with raters constant elapsed time: 234.86 secs (3.91 mins)
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.599566 | time=2.7s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.567772 | time=5.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.564870 | time=7.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.564632 | time=10.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=130 | loss=2.564613 | time=11.4s
INFO:birdwatch.reputation_matrix_factorization:Final scoring, final round fitting reputation MF: learn just note intercept
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:505: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = savedFinalRoundPrescoringRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 22064, vs. num we are initializing: 96153
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 22064
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.430499 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.386934 | time=2.6s
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 43.16 secs (0.72 mins)
INFO:birdwatch.mf_base_scorer:sn cols: Index(['noteId', 'ratingWeight', 'notHelpfulOtherAdjusted',
'notHelpfulIncorrectAdjusted',
'notHelpfulSourcesMissingOrUnreliableAdjusted',
'notHelpfulOpinionSpeculationOrBiasAdjusted',
'notHelpfulMissingKeyPointsAdjusted', 'notHelpfulOutdatedAdjusted',
'notHelpfulHardToUnderstandAdjusted',
'notHelpfulArgumentativeOrBiasedAdjusted', 'notHelpfulOffTopicAdjusted',
'notHelpfulSpamHarassmentOrAbuseAdjusted',
'notHelpfulIrrelevantSourcesAdjusted',
'notHelpfulOpinionSpeculationAdjusted',
'notHelpfulNoteNotNeededAdjusted', 'notHelpfulOtherAdjustedRatio',
'notHelpfulIncorrectAdjustedRatio',
'notHelpfulSourcesMissingOrUnreliableAdjustedRatio',
'notHelpfulOpinionSpeculationOrBiasAdjustedRatio',
'notHelpfulMissingKeyPointsAdjustedRatio',
'notHelpfulOutdatedAdjustedRatio',
'notHelpfulHardToUnderstandAdjustedRatio',
'notHelpfulArgumentativeOrBiasedAdjustedRatio',
'notHelpfulOffTopicAdjustedRatio',
'notHelpfulSpamHarassmentOrAbuseAdjustedRatio',
'notHelpfulIrrelevantSourcesAdjustedRatio',
'notHelpfulOpinionSpeculationAdjustedRatio',
'notHelpfulNoteNotNeededAdjustedRatio', 'helpfulOther',
'helpfulInformative', 'helpfulClear', 'helpfulEmpathetic',
'helpfulGoodSources', 'helpfulUniqueContext', 'helpfulAddressesClaim',
'helpfulImportantContext', 'helpfulUnbiasedLanguage', 'notHelpfulOther',
'notHelpfulIncorrect', 'notHelpfulSourcesMissingOrUnreliable',
'notHelpfulOpinionSpeculationOrBias', 'notHelpfulMissingKeyPoints',
'notHelpfulOutdated', 'notHelpfulHardToUnderstand',
'notHelpfulArgumentativeOrBiased', 'notHelpfulOffTopic',
'notHelpfulSpamHarassmentOrAbuse', 'notHelpfulIrrelevantSources',
'notHelpfulOpinionSpeculation', 'notHelpfulNoteNotNeeded', 'numRatings',
'noteAuthorParticipantId', 'classification', 'currentStatus',
'internalNoteIntercept', 'internalNoteFactor1',
'lowDiligenceNoteIntercept', 'internalNoteFactor1_max',
'internalNoteFactor1_median', 'internalNoteFactor1_min',
'internalNoteFactor1_refit_orig', 'internalNoteIntercept_median',
'internalNoteIntercept_refit_orig', 'ratingCount_all',
'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'notHelpfulIncorrect_interval', 'p_incorrect_user_interval',
'num_voters_interval', 'tf_idf_incorrect_interval',
'internalRatingStatus', 'internalActiveRules', 'activeFilterTags',
'crhBool', 'crnhBool', 'awaitingBool'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_7 Final compute scored notes elapsed time: 77.13 secs (1.29 mins)
INFO:birdwatch.scorer:Postprocessing output for MFGroupScorer_7
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.386325 | time=5.2s
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.reputation_matrix_factorization:epoch=070 | loss=0.386306 | time=6.1s
INFO:birdwatch.diligence_model:Low diligence final loss: 0.3863
INFO:birdwatch.mf_base_scorer:diligenceNP cols: Index(['noteId', 'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'], dtype='object')
INFO:birdwatch.mf_base_scorer:np cols: Index(['noteId', 'noteIndex', 'internalNoteIntercept', 'internalNoteFactor1',
'internalNoteFactor1_max', 'internalNoteFactor1_median',
'internalNoteFactor1_min', 'internalNoteFactor1_refit_orig',
'internalNoteIntercept_median', 'internalNoteIntercept_refit_orig',
'ratingCount_all', 'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_6 Low Diligence Reputation Model elapsed time: 22.18 secs (0.37 mins)
INFO:birdwatch.mf_base_scorer:About to call compute_scored_notes with MFGroupScorer_6
INFO:birdwatch.pseudo_raters:------------------
INFO:birdwatch.pseudo_raters:Re-scoring all notes with extra rating added: {'raterParticipantId': '-2', 'raterIndex': 382561, 'internalRaterIntercept': -0.44769228, 'internalRaterFactor1': 0.0, 'helpfulNum': 1.0}
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 382561, Notes: 1226896
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INIT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/pseudo_raters.py, in _check_note_parameters_same, at line 90: assert (noteParamsFromNewModel == self.noteParams).all().all()
PandasTypeError: Type expectation mismatch on noteId: found=bool expected=int64
INFO:birdwatch.scorer: Ratings after group filter: 565869
INFO:birdwatch.scorer:MFGroupScorer_5 Filter input elapsed time: 49.96 secs (0.83 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 256086, Num Unique Notes Rated: 23716, Num Unique Raters: 6216
INFO:birdwatch.scorer:MFGroupScorer_5 Prepare ratings elapsed time: 0.23 secs (0.00 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.helpfulness_scores:Unique Raters: 3042
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 17268
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 3510
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 3042
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 190605
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 190605
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 3042, Notes: 23700
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 8.04240506329114
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 62.65779092702169
INFO:birdwatch.matrix_factorization:Correcting loss function to simulate rating per note loss ratio = 8.278428426216466
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.matrix_factorization:epoch 0 0.15058447420597076
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10152675956487656
INFO:birdwatch.matrix_factorization:epoch 20 0.09538181126117706
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05800676345825195
INFO:birdwatch.matrix_factorization:epoch 40 0.09152333438396454
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05575576424598694
INFO:birdwatch.matrix_factorization:epoch 60 0.09121275693178177
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05589892715215683
INFO:birdwatch.matrix_factorization:epoch 80 0.09117168188095093
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05603545904159546
INFO:birdwatch.matrix_factorization:Num epochs: 84
INFO:birdwatch.matrix_factorization:epoch 84 0.09116873145103455
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.05606779828667641
INFO:birdwatch.matrix_factorization:Global Intercept: 0.18550153076648712
INFO:birdwatch.scorer:MFGroupScorer_5 Final helpfulness-filtered MF elapsed time: 1.48 secs (0.02 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_5 final scoring, about to call diligence with 190605 final round ratings.
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:467: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
noteInitState[c.internalNoteInterceptKey] = noteInitState[c.internalNoteInterceptRound2Key]
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:470: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = raterInitState[c.internalRaterInterceptRound2Key]
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
noteId internalNoteIntercept internalNoteFactor1 \
0 1685671586295099392 -0.198606 -2.415438
1 1694265338060222629 -3.474766 0.750264
2 1708971742826213665 -1.393753 0.436008
3 1709029742886760650 -1.573781 0.471117
4 1710469668035801230 -1.503085 0.295592
... ... ... ...
22622 1796074984558710823 -0.346538 -0.960280
22623 1853499093554770105 -0.346727 -0.694310
22624 1779889399464935794 0.304722 -1.039934
22625 1821313194553700446 0.219867 -1.038188
22626 1821335118532731025 0.304476 -1.039811
internalNoteInterceptRound2
0 -0.198606
1 -3.474766
2 -1.393753
3 -1.573781
4 -1.503085
... ...
22622 -0.346538
22623 -0.346727
22624 0.304722
22625 0.219867
22626 0.304476
[22627 rows x 4 columns],
raterInitState:
raterParticipantId \
0 00029D1FDD352D79B5073189C3F2BDF6377581F50D66C1...
1 00053CDCAC04E3692F4A01305C8F3D093CCE221157D539...
2 0005983E6E18862483AB372C5B61FEBC1F8A573E7701F9...
3 000F1687C56AB92D846F2B9BFA71AE16D8A88426754E3B...
4 0011AB5425173F62E5D4A1787E34ED324BDD5807D4C3B8...
... ...
17263 FFDC71F0AE061FDEC1E553DBEADDD7EFBD520C6EA87C6F...
17264 FFE87CF4860C52665B228E9F345BB3EE183994416FA6D7...
17265 FFEA6CF8956CF5972B2086A17F147FCC0B59CBD4CE0C7E...
17266 FFF3E935633C6870DE7674D0681C5821BC408073C84A36...
17267 FFF6DBEDE9ED4DC6A61291E33742D1805155E385475E43...
internalRaterIntercept internalRaterFactor1 internalRaterReputation \
0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
... ... ... ...
17263 NaN NaN NaN
17264 NaN NaN NaN
17265 NaN NaN NaN
17266 NaN NaN NaN
17267 NaN NaN NaN
internalRaterInterceptRound2
0 NaN
1 NaN
2 NaN
3 NaN
4 NaN
... ...
17263 NaN
17264 NaN
17265 NaN
17266 NaN
17267 NaN
[17268 rows x 5 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 3042, vs. num we are initializing: 17268
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 3042
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 3042, vs. num we are initializing: 17268
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 3042
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterReputation:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 3042, vs. num we are initializing: 17268
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterReputations: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterReputations: 3042
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 23700, vs. num we are initializing: 22627
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteFactor1s: 23201
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteFactor1s: 499
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 23700, vs. num we are initializing: 22627
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteIntercepts: 23201
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteIntercepts: 499
INFO:birdwatch.reputation_matrix_factorization:Final scoring, initial round fitting reputation MF (equivalent to Round 2 in Prescoring - learn note factor)
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=7.319346 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.599784 | time=0.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.558967 | time=0.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.553374 | time=0.7s
INFO:birdwatch.matrix_factorization:epoch 0 0.16021329164505005
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1222662404179573
INFO:birdwatch.reputation_matrix_factorization:epoch=120 | loss=2.552587 | time=0.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=150 | loss=2.552363 | time=1.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=180 | loss=2.552264 | time=1.3s
INFO:birdwatch.reputation_matrix_factorization:epoch=190 | loss=2.552243 | time=1.4s
INFO:birdwatch.reputation_matrix_factorization:Final scoring, final round fitting reputation MF: learn just note intercept
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:505: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = savedFinalRoundPrescoringRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 3042, vs. num we are initializing: 17268
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 3042
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.591146 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.499323 | time=0.2s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.497705 | time=0.5s
INFO:birdwatch.reputation_matrix_factorization:epoch=075 | loss=0.497654 | time=0.6s
INFO:birdwatch.diligence_model:Low diligence final loss: 0.4977
INFO:birdwatch.mf_base_scorer:diligenceNP cols: Index(['noteId', 'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'], dtype='object')
INFO:birdwatch.mf_base_scorer:np cols: Index(['noteId', 'noteIndex', 'internalNoteIntercept', 'internalNoteFactor1',
'internalNoteFactor1_max', 'internalNoteFactor1_median',
'internalNoteFactor1_min', 'internalNoteFactor1_refit_orig',
'internalNoteIntercept_median', 'internalNoteIntercept_refit_orig',
'ratingCount_all', 'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_5 Low Diligence Reputation Model elapsed time: 2.38 secs (0.04 mins)
INFO:birdwatch.mf_base_scorer:About to call compute_scored_notes with MFGroupScorer_5
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 494: noteStats = tagAggregates.merge(noteStats, on=c.noteIdKey, how="outer")
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:compute_scored_notes: compute tag aggregates elapsed time: 2.52 secs (0.04 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:82: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals.drop(columns_to_drop, inplace=True, axis=1)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:84: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = (
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:91: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:95: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:99: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey] = ratings_w_user_totals[
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 494: noteStats = tagAggregates.merge(noteStats, on=c.noteIdKey, how="outer")
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:compute_scored_notes: compute tag aggregates elapsed time: 8.85 secs (0.15 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 499: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on num_voters_interval: result=float64 expected=int64 (allowed)
INFO:birdwatch.constants:compute_scored_notes: compute incorrect aggregates elapsed time: 2.99 secs (0.05 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.70 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.16 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.83 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.68 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.65 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:82: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals.drop(columns_to_drop, inplace=True, axis=1)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:84: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = (
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:91: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:95: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:99: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey] = ratings_w_user_totals[
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.73 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRHInertia (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRHInertia (v1.0) elapsed time: 1.06 secs (0.02 mins)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 499: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on num_voters_interval: result=float64 expected=int64 (allowed)
INFO:birdwatch.constants:compute_scored_notes: compute incorrect aggregates elapsed time: 7.39 secs (0.12 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRHInertia (v1.0) elapsed time: 1.79 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: TagFilter (v1.0)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.13 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.77 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.03 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.68 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.64 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.scoring_rules:Candidate notes prior to tag filtering: 1782230
INFO:birdwatch.scoring_rules:Checking note tags:
INFO:birdwatch.scoring_rules:notHelpfulOther
INFO:birdwatch.scoring_rules:notHelpfulIncorrect
INFO:birdwatch.scoring_rules:notHelpfulSourcesMissingOrUnreliable
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculationOrBias
INFO:birdwatch.scoring_rules:notHelpfulMissingKeyPoints
INFO:birdwatch.scoring_rules:notHelpfulOutdated
INFO:birdwatch.scoring_rules:notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:outlier filtering disabled for tag: notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:notHelpfulArgumentativeOrBiased
INFO:birdwatch.scoring_rules:notHelpfulOffTopic
INFO:birdwatch.scoring_rules:notHelpfulSpamHarassmentOrAbuse
INFO:birdwatch.scoring_rules:notHelpfulIrrelevantSources
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculation
INFO:birdwatch.scoring_rules:notHelpfulNoteNotNeeded
INFO:birdwatch.scoring_rules:Total {note, tag} pairs where tag filter logic triggered: 283
INFO:birdwatch.scoring_rules:Total unique notes impacted by tag filtering: 183
INFO:birdwatch.constants:Calling score_notes: TagFilter (v1.0) elapsed time: 3.27 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.75 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRHInertia (v1.0)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/scoring_rules.py, in apply_scoring_rules, at line 1099: noteColumns = noteColumns.merge(
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:Applying scoring rule: TagFilter (v1.0) elapsed time: 3.92 secs (0.07 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: CRHSuperThreshold (v1.0)
INFO:birdwatch.constants:Calling score_notes: CRHSuperThreshold (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.constants:Calling score_notes: GeneralCRHInertia (v1.0) elapsed time: 0.99 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: CRHSuperThreshold (v1.0) elapsed time: 0.74 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: ElevatedCRHInertia (v1.0)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRHInertia (v1.0) elapsed time: 1.64 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: TagFilter (v1.0)
INFO:birdwatch.constants:Calling score_notes: ElevatedCRHInertia (v1.0) elapsed time: 1.02 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: ElevatedCRHInertia (v1.0) elapsed time: 1.72 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterIncorrect (v1.0)
INFO:birdwatch.scoring_rules:Candidate notes prior to tag filtering: 1771134
INFO:birdwatch.scoring_rules:Checking note tags:
INFO:birdwatch.scoring_rules:notHelpfulOther
INFO:birdwatch.scoring_rules:notHelpfulIncorrect
INFO:birdwatch.scoring_rules:notHelpfulSourcesMissingOrUnreliable
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculationOrBias
INFO:birdwatch.scoring_rules:notHelpfulMissingKeyPoints
INFO:birdwatch.scoring_rules:notHelpfulOutdated
INFO:birdwatch.scoring_rules:notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:outlier filtering disabled for tag: notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:notHelpfulArgumentativeOrBiased
INFO:birdwatch.scoring_rules:notHelpfulOffTopic
INFO:birdwatch.scoring_rules:notHelpfulSpamHarassmentOrAbuse
INFO:birdwatch.scoring_rules:notHelpfulIrrelevantSources
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculation
INFO:birdwatch.scoring_rules:notHelpfulNoteNotNeeded
INFO:birdwatch.scoring_rules:Total {note, tag} pairs where tag filter logic triggered: 9549
INFO:birdwatch.scoring_rules:Total unique notes impacted by tag filtering: 5520
INFO:birdwatch.constants:Calling score_notes: TagFilter (v1.0) elapsed time: 3.18 secs (0.05 mins)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/scoring_rules.py, in apply_scoring_rules, at line 1099: noteColumns = noteColumns.merge(
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:Applying scoring rule: TagFilter (v1.0) elapsed time: 3.87 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: CRHSuperThreshold (v1.0)
INFO:birdwatch.constants:Calling score_notes: CRHSuperThreshold (v1.0) elapsed time: 0.14 secs (0.00 mins)
INFO:birdwatch.scoring_rules:Total notes impacted by incorrect filtering: 71
INFO:birdwatch.constants:Calling score_notes: FilterIncorrect (v1.0) elapsed time: 3.22 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: CRHSuperThreshold (v1.0) elapsed time: 0.80 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: ElevatedCRHInertia (v1.0)
INFO:birdwatch.constants:Applying scoring rule: FilterIncorrect (v1.0) elapsed time: 3.86 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLowDiligence (v1.0)
INFO:birdwatch.constants:Calling score_notes: ElevatedCRHInertia (v1.0) elapsed time: 1.00 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: ElevatedCRHInertia (v1.0) elapsed time: 1.65 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterIncorrect (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by low diligence filtering: 4847
INFO:birdwatch.constants:Calling score_notes: FilterLowDiligence (v1.0) elapsed time: 3.06 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLowDiligence (v1.0) elapsed time: 3.78 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLargeFactor (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by incorrect filtering: 1497
INFO:birdwatch.constants:Calling score_notes: FilterIncorrect (v1.0) elapsed time: 2.86 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterIncorrect (v1.0) elapsed time: 3.50 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLowDiligence (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by large factor filtering: 15
INFO:birdwatch.constants:Calling score_notes: FilterLargeFactor (v1.0) elapsed time: 0.92 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLargeFactor (v1.0) elapsed time: 1.58 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Total notes impacted by low diligence filtering: 42091
INFO:birdwatch.constants:Calling score_notes: FilterLowDiligence (v1.0) elapsed time: 2.85 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLowDiligence (v1.0) elapsed time: 3.54 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLargeFactor (v1.0)
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
INFO:birdwatch.scoring_rules:Total notes impacted by large factor filtering: 96
INFO:birdwatch.constants:Calling score_notes: FilterLargeFactor (v1.0) elapsed time: 0.85 secs (0.01 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLargeFactor (v1.0) elapsed time: 1.50 secs (0.02 mins)
INFO:birdwatch.scorer: Original noteScores length: 1783629
INFO:birdwatch.scorer: Final noteScores length: 8848
INFO:birdwatch.matrix_factorization:epoch 20 0.13505569100379944
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10621832311153412
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in score_final, at line 1190: noteScores = noteScores.merge(
PandasTypeError: Output mismatch on numFinalRoundRatings: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_7 Postprocess output elapsed time: 67.65 secs (1.13 mins)
INFO:birdwatch.run_scoring:MFGroupScorer_4 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 43.74 secs (0.73 mins)
INFO:birdwatch.constants:Condense noteRules after applying all scoring rules elapsed time: 39.80 secs (0.66 mins)
INFO:birdwatch.mf_base_scorer:sn cols: Index(['noteId', 'ratingWeight', 'notHelpfulOtherAdjusted',
'notHelpfulIncorrectAdjusted',
'notHelpfulSourcesMissingOrUnreliableAdjusted',
'notHelpfulOpinionSpeculationOrBiasAdjusted',
'notHelpfulMissingKeyPointsAdjusted', 'notHelpfulOutdatedAdjusted',
'notHelpfulHardToUnderstandAdjusted',
'notHelpfulArgumentativeOrBiasedAdjusted', 'notHelpfulOffTopicAdjusted',
'notHelpfulSpamHarassmentOrAbuseAdjusted',
'notHelpfulIrrelevantSourcesAdjusted',
'notHelpfulOpinionSpeculationAdjusted',
'notHelpfulNoteNotNeededAdjusted', 'notHelpfulOtherAdjustedRatio',
'notHelpfulIncorrectAdjustedRatio',
'notHelpfulSourcesMissingOrUnreliableAdjustedRatio',
'notHelpfulOpinionSpeculationOrBiasAdjustedRatio',
'notHelpfulMissingKeyPointsAdjustedRatio',
'notHelpfulOutdatedAdjustedRatio',
'notHelpfulHardToUnderstandAdjustedRatio',
'notHelpfulArgumentativeOrBiasedAdjustedRatio',
'notHelpfulOffTopicAdjustedRatio',
'notHelpfulSpamHarassmentOrAbuseAdjustedRatio',
'notHelpfulIrrelevantSourcesAdjustedRatio',
'notHelpfulOpinionSpeculationAdjustedRatio',
'notHelpfulNoteNotNeededAdjustedRatio', 'helpfulOther',
'helpfulInformative', 'helpfulClear', 'helpfulEmpathetic',
'helpfulGoodSources', 'helpfulUniqueContext', 'helpfulAddressesClaim',
'helpfulImportantContext', 'helpfulUnbiasedLanguage', 'notHelpfulOther',
'notHelpfulIncorrect', 'notHelpfulSourcesMissingOrUnreliable',
'notHelpfulOpinionSpeculationOrBias', 'notHelpfulMissingKeyPoints',
'notHelpfulOutdated', 'notHelpfulHardToUnderstand',
'notHelpfulArgumentativeOrBiased', 'notHelpfulOffTopic',
'notHelpfulSpamHarassmentOrAbuse', 'notHelpfulIrrelevantSources',
'notHelpfulOpinionSpeculation', 'notHelpfulNoteNotNeeded', 'numRatings',
'noteAuthorParticipantId', 'classification', 'currentStatus',
'internalNoteIntercept', 'internalNoteFactor1',
'lowDiligenceNoteIntercept', 'internalNoteFactor1_max',
'internalNoteFactor1_median', 'internalNoteFactor1_min',
'internalNoteFactor1_refit_orig', 'internalNoteIntercept_median',
'internalNoteIntercept_refit_orig', 'ratingCount_all',
'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'notHelpfulIncorrect_interval', 'p_incorrect_user_interval',
'num_voters_interval', 'tf_idf_incorrect_interval',
'internalRatingStatus', 'internalActiveRules', 'activeFilterTags',
'crhBool', 'crnhBool', 'awaitingBool'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_5 Final compute scored notes elapsed time: 75.26 secs (1.25 mins)
INFO:birdwatch.scorer:Postprocessing output for MFGroupScorer_5
INFO:birdwatch.mf_base_scorer:sn cols: Index(['noteId', 'ratingWeight', 'notHelpfulOtherAdjusted',
'notHelpfulIncorrectAdjusted',
'notHelpfulSourcesMissingOrUnreliableAdjusted',
'notHelpfulOpinionSpeculationOrBiasAdjusted',
'notHelpfulMissingKeyPointsAdjusted', 'notHelpfulOutdatedAdjusted',
'notHelpfulHardToUnderstandAdjusted',
'notHelpfulArgumentativeOrBiasedAdjusted', 'notHelpfulOffTopicAdjusted',
'notHelpfulSpamHarassmentOrAbuseAdjusted',
'notHelpfulIrrelevantSourcesAdjusted',
'notHelpfulOpinionSpeculationAdjusted',
'notHelpfulNoteNotNeededAdjusted', 'notHelpfulOtherAdjustedRatio',
'notHelpfulIncorrectAdjustedRatio',
'notHelpfulSourcesMissingOrUnreliableAdjustedRatio',
'notHelpfulOpinionSpeculationOrBiasAdjustedRatio',
'notHelpfulMissingKeyPointsAdjustedRatio',
'notHelpfulOutdatedAdjustedRatio',
'notHelpfulHardToUnderstandAdjustedRatio',
'notHelpfulArgumentativeOrBiasedAdjustedRatio',
'notHelpfulOffTopicAdjustedRatio',
'notHelpfulSpamHarassmentOrAbuseAdjustedRatio',
'notHelpfulIrrelevantSourcesAdjustedRatio',
'notHelpfulOpinionSpeculationAdjustedRatio',
'notHelpfulNoteNotNeededAdjustedRatio', 'helpfulOther',
'helpfulInformative', 'helpfulClear', 'helpfulEmpathetic',
'helpfulGoodSources', 'helpfulUniqueContext', 'helpfulAddressesClaim',
'helpfulImportantContext', 'helpfulUnbiasedLanguage', 'notHelpfulOther',
'notHelpfulIncorrect', 'notHelpfulSourcesMissingOrUnreliable',
'notHelpfulOpinionSpeculationOrBias', 'notHelpfulMissingKeyPoints',
'notHelpfulOutdated', 'notHelpfulHardToUnderstand',
'notHelpfulArgumentativeOrBiased', 'notHelpfulOffTopic',
'notHelpfulSpamHarassmentOrAbuse', 'notHelpfulIrrelevantSources',
'notHelpfulOpinionSpeculation', 'notHelpfulNoteNotNeeded', 'numRatings',
'noteAuthorParticipantId', 'classification', 'currentStatus',
'internalNoteIntercept', 'internalNoteFactor1',
'lowDiligenceNoteIntercept', 'internalNoteFactor1_max',
'internalNoteFactor1_median', 'internalNoteFactor1_min',
'internalNoteFactor1_refit_orig', 'internalNoteIntercept_median',
'internalNoteIntercept_refit_orig', 'ratingCount_all',
'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'notHelpfulIncorrect_interval', 'p_incorrect_user_interval',
'num_voters_interval', 'tf_idf_incorrect_interval',
'internalRatingStatus', 'internalActiveRules', 'activeFilterTags',
'crhBool', 'crnhBool', 'awaitingBool'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_6 Final compute scored notes elapsed time: 85.28 secs (1.42 mins)
INFO:birdwatch.scorer:Postprocessing output for MFGroupScorer_6
INFO:birdwatch.run_scoring:MFGroupScorer_4 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_4 run_scorer_parallelizable: Loading data elapsed time: 28.52 secs (0.48 mins)
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFGroupScorer_4 set to: 4
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_4. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.matrix_factorization:epoch 40 0.1340135782957077
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.10468088090419769
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Original noteScores length: 1783629
INFO:birdwatch.scorer: Final noteScores length: 37140
INFO:birdwatch.scorer: Ratings after group filter: 1940497
INFO:birdwatch.scorer:MFGroupScorer_4 Filter input elapsed time: 48.52 secs (0.81 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 1551079, Num Unique Notes Rated: 61887, Num Unique Raters: 19569
INFO:birdwatch.scorer:MFGroupScorer_4 Prepare ratings elapsed time: 0.80 secs (0.01 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in score_final, at line 1190: noteScores = noteScores.merge(
PandasTypeError: Output mismatch on numFinalRoundRatings: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_6 Postprocess output elapsed time: 60.28 secs (1.00 mins)
INFO:birdwatch.scorer: Original noteScores length: 1783629
INFO:birdwatch.helpfulness_scores:Unique Raters: 10027
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 39083
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 10836
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 10027
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 985834
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 985834
INFO:birdwatch.scorer: Final noteScores length: 4010
INFO:birdwatch.run_scoring:MFGroupScorer_3 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 10027, Notes: 61814
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 15.948393567800174
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 98.31794155779396
INFO:birdwatch.matrix_factorization:Correcting loss function to simulate rating per note loss ratio = 16.100692228386272
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.matrix_factorization:epoch 0 0.1481984555721283
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.12249139696359634
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/mf_base_scorer.py, in score_final, at line 1190: noteScores = noteScores.merge(
PandasTypeError: Output mismatch on numFinalRoundRatings: result=float64 expected=int64 (allowed)
INFO:birdwatch.scorer:MFGroupScorer_5 Postprocess output elapsed time: 63.35 secs (1.06 mins)
INFO:birdwatch.matrix_factorization:epoch 20 0.09776052832603455
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06773079186677933
INFO:birdwatch.run_scoring:MFGroupScorer_2 run_scorer_parallelizable just started in parallel: loading data from shared memory.
INFO:birdwatch.matrix_factorization:epoch 40 0.0944298654794693
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06429769098758698
INFO:birdwatch.matrix_factorization:epoch 60 0.09417957067489624
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.06392911076545715
INFO:birdwatch.matrix_factorization:Num epochs: 72
INFO:birdwatch.matrix_factorization:epoch 72 0.09415718913078308
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0638841763138771
INFO:birdwatch.matrix_factorization:Global Intercept: 0.17005860805511475
INFO:birdwatch.scorer:MFGroupScorer_4 Final helpfulness-filtered MF elapsed time: 7.28 secs (0.12 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_4 final scoring, about to call diligence with 985834 final round ratings.
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:467: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
noteInitState[c.internalNoteInterceptKey] = noteInitState[c.internalNoteInterceptRound2Key]
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:470: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = raterInitState[c.internalRaterInterceptRound2Key]
INFO:birdwatch.reputation_matrix_factorization:Setup model: noteInitState:
noteId internalNoteIntercept internalNoteFactor1 \
0 1682453260345528328 -2.110976 2.561753
1 1708988303926862198 1.531360 0.462310
2 1711418483634741262 -0.972946 1.663695
3 1711435360398356934 -0.336547 1.692834
4 1711499136887931319 -2.186830 0.124414
... ... ... ...
61102 1820850280050618650 0.356350 1.048785
61103 1820850814115557481 0.374662 1.046702
61104 1806138066056404994 -0.530391 -0.791771
61105 1790301132448833854 -0.180079 0.688214
61106 1704681040659521639 -0.288420 -0.803593
internalNoteInterceptRound2
0 -2.110976
1 1.531360
2 -0.972946
3 -0.336547
4 -2.186830
... ...
61102 0.356350
61103 0.374662
61104 -0.530391
61105 -0.180079
61106 -0.288420
[61107 rows x 4 columns],
raterInitState:
raterParticipantId \
0 000045A5FA0CF004F68CBF2913506C37D540CF48522D33...
1 00029D1FDD352D79B5073189C3F2BDF6377581F50D66C1...
2 00053CDCAC04E3692F4A01305C8F3D093CCE221157D539...
3 0005983E6E18862483AB372C5B61FEBC1F8A573E7701F9...
4 000C92F6B8127DF83BE8430A54BCA7ECF08071EC8E00E2...
... ...
39078 FFF3E935633C6870DE7674D0681C5821BC408073C84A36...
39079 FFF6DBEDE9ED4DC6A61291E33742D1805155E385475E43...
39080 FFF89590FF300D0348631F2F16AA908F663A888A3F82E0...
39081 FFFA43EFB0AAB3BFD273666FF123BFE69D863B9A2F5E44...
39082 FFFC011F23086D8153F0A3FF336F33EE80521EC35F9ACD...
internalRaterIntercept internalRaterFactor1 internalRaterReputation \
0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
... ... ... ...
39078 NaN NaN NaN
39079 NaN NaN NaN
39080 0.281992 -0.450381 0.534745
39081 NaN NaN NaN
39082 NaN NaN NaN
internalRaterInterceptRound2
0 NaN
1 NaN
2 NaN
3 NaN
4 NaN
... ...
39078 NaN
39079 NaN
39080 0.281992
39081 NaN
39082 NaN
[39083 rows x 5 columns]
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 10027, vs. num we are initializing: 39083
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterFactor1s: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterFactor1s: 10027
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 10027, vs. num we are initializing: 39083
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 10027
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterReputation:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 10027, vs. num we are initializing: 39083
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterReputations: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterReputations: 10027
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteFactor1:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 61814, vs. num we are initializing: 61107
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteFactor1s: 60608
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteFactor1s: 1206
INFO:birdwatch.reputation_matrix_factorization:Initializing internalNoteIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 61814, vs. num we are initializing: 61107
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalNoteIntercepts: 60608
INFO:birdwatch.reputation_matrix_factorization: initialized internalNoteIntercepts: 1206
INFO:birdwatch.reputation_matrix_factorization:Final scoring, initial round fitting reputation MF (equivalent to Round 2 in Prescoring - learn note factor)
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=5.008080 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=2.467012 | time=1.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=2.439165 | time=2.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=090 | loss=2.437090 | time=3.1s
INFO:birdwatch.reputation_matrix_factorization:epoch=115 | loss=2.436965 | time=4.0s
INFO:birdwatch.reputation_matrix_factorization:Final scoring, final round fitting reputation MF: learn just note intercept
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:505: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
raterInitState[c.internalRaterInterceptKey] = savedFinalRoundPrescoringRaterIntercept
INFO:birdwatch.reputation_matrix_factorization:Initializing internalRaterIntercept:
INFO:birdwatch.reputation_matrix_factorization: num in dataset: 10027, vs. num we are initializing: 39083
INFO:birdwatch.reputation_matrix_factorization: uninitialized internalRaterIntercepts: 0
INFO:birdwatch.reputation_matrix_factorization: initialized internalRaterIntercepts: 10027
INFO:birdwatch.reputation_matrix_factorization:epoch=000 | loss=0.408247 | time=0.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=030 | loss=0.387106 | time=1.0s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.386858 | time=1.9s
INFO:birdwatch.reputation_matrix_factorization:epoch=060 | loss=0.386858 | time=1.9s
INFO:birdwatch.diligence_model:Low diligence final loss: 0.3869
INFO:birdwatch.mf_base_scorer:diligenceNP cols: Index(['noteId', 'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'], dtype='object')
INFO:birdwatch.mf_base_scorer:np cols: Index(['noteId', 'noteIndex', 'internalNoteIntercept', 'internalNoteFactor1',
'internalNoteFactor1_max', 'internalNoteFactor1_median',
'internalNoteFactor1_min', 'internalNoteFactor1_refit_orig',
'internalNoteIntercept_median', 'internalNoteIntercept_refit_orig',
'ratingCount_all', 'ratingCount_neg_fac', 'ratingCount_pos_fac',
'internalNoteIntercept_max', 'internalNoteIntercept_min',
'lowDiligenceNoteIntercept', 'lowDiligenceNoteFactor1'],
dtype='object')
INFO:birdwatch.scorer:MFGroupScorer_4 Low Diligence Reputation Model elapsed time: 7.50 secs (0.13 mins)
INFO:birdwatch.mf_base_scorer:About to call compute_scored_notes with MFGroupScorer_4
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_note_stats, at line 322: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on numRatings: result=float64 expected=int64 (allowed)
PandasTypeError: Output mismatch on numRatingsLast28: result=float64 expected=int64 (allowed)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 494: noteStats = tagAggregates.merge(noteStats, on=c.noteIdKey, how="outer")
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:compute_scored_notes: compute tag aggregates elapsed time: 3.99 secs (0.07 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:82: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals.drop(columns_to_drop, inplace=True, axis=1)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:84: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = (
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:90: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:91: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRateByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:94: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:95: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.incorrectTagRatingsMadeByRaterKey] = ratings_w_user_totals[
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:98: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey].fillna(0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/incorrect_filter.py:99: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
ratings_w_user_totals[c.totalRatingsMadeByRaterKey] = ratings_w_user_totals[
INFO:birdwatch.run_scoring:MFGroupScorer_3 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_3 run_scorer_parallelizable: Loading data elapsed time: 26.55 secs (0.44 mins)
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFGroupScorer_3 set to: 4
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_3. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
MERGE ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/note_ratings.py, in compute_scored_notes, at line 499: noteStats = noteStats.merge(
PandasTypeError: Output mismatch on num_voters_interval: result=float64 expected=int64 (allowed)
INFO:birdwatch.constants:compute_scored_notes: compute incorrect aggregates elapsed time: 4.06 secs (0.07 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: InitialNMR (v1.0)
INFO:birdwatch.constants:Calling score_notes: InitialNMR (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: InitialNMR (v1.0) elapsed time: 0.63 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRH (v1.0) elapsed time: 0.11 secs (0.00 mins)
INFO:birdwatch.run_scoring:MFGroupScorer_2 run_scorer_parallelizable just finished loading data from shared memory.
INFO:birdwatch.constants:MFGroupScorer_2 run_scorer_parallelizable: Loading data elapsed time: 26.67 secs (0.44 mins)
INFO:birdwatch.mf_base_scorer:score_final: Torch intra-op parallelism for MFGroupScorer_2 set to: 4
INFO:birdwatch.constants:Applying scoring rule: GeneralCRH (v1.0) elapsed time: 0.72 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRNH (v1.0) elapsed time: 0.02 secs (0.00 mins)
INFO:birdwatch.scorer:Filtering ratings for MFGroupScorer_2. Original rating length: 120945188
INFO:birdwatch.scorer: Ratings after topic filter: 120945188
INFO:birdwatch.constants:Applying scoring rule: GeneralCRNH (v1.0) elapsed time: 0.61 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: UcbCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: UcbCRNH (v1.0) elapsed time: 0.01 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: UcbCRNH (v1.0) elapsed time: 0.61 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: NmCRNH (v1.0)
INFO:birdwatch.constants:Calling score_notes: NmCRNH (v1.0) elapsed time: 0.10 secs (0.00 mins)
INFO:birdwatch.matrix_factorization:epoch 60 0.1338634043931961
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1044660210609436
INFO:birdwatch.constants:Applying scoring rule: NmCRNH (v1.0) elapsed time: 0.75 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: GeneralCRHInertia (v1.0)
INFO:birdwatch.constants:Calling score_notes: GeneralCRHInertia (v1.0) elapsed time: 0.98 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: GeneralCRHInertia (v1.0) elapsed time: 1.61 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: TagFilter (v1.0)
INFO:birdwatch.scoring_rules:Candidate notes prior to tag filtering: 1780422
INFO:birdwatch.scoring_rules:Checking note tags:
INFO:birdwatch.scoring_rules:notHelpfulOther
INFO:birdwatch.scoring_rules:notHelpfulIncorrect
INFO:birdwatch.scoring_rules:notHelpfulSourcesMissingOrUnreliable
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculationOrBias
INFO:birdwatch.scoring_rules:notHelpfulMissingKeyPoints
INFO:birdwatch.scoring_rules:notHelpfulOutdated
INFO:birdwatch.scoring_rules:notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:outlier filtering disabled for tag: notHelpfulHardToUnderstand
INFO:birdwatch.scoring_rules:notHelpfulArgumentativeOrBiased
INFO:birdwatch.scoring_rules:notHelpfulOffTopic
INFO:birdwatch.scoring_rules:notHelpfulSpamHarassmentOrAbuse
INFO:birdwatch.scoring_rules:notHelpfulIrrelevantSources
INFO:birdwatch.scoring_rules:notHelpfulOpinionSpeculation
INFO:birdwatch.scoring_rules:notHelpfulNoteNotNeeded
INFO:birdwatch.scoring_rules:Total {note, tag} pairs where tag filter logic triggered: 3970
INFO:birdwatch.scoring_rules:Total unique notes impacted by tag filtering: 2115
INFO:birdwatch.constants:Calling score_notes: TagFilter (v1.0) elapsed time: 3.07 secs (0.05 mins)
CONCAT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/scoring_rules.py, in apply_scoring_rules, at line 1099: noteColumns = noteColumns.merge(
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
PandasTypeError: Type expectation mismatch on noteId: found=float64 expected=int64
INFO:birdwatch.constants:Applying scoring rule: TagFilter (v1.0) elapsed time: 3.74 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: CRHSuperThreshold (v1.0)
INFO:birdwatch.constants:Calling score_notes: CRHSuperThreshold (v1.0) elapsed time: 0.12 secs (0.00 mins)
INFO:birdwatch.constants:Applying scoring rule: CRHSuperThreshold (v1.0) elapsed time: 0.77 secs (0.01 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: ElevatedCRHInertia (v1.0)
INFO:birdwatch.constants:Calling score_notes: ElevatedCRHInertia (v1.0) elapsed time: 0.94 secs (0.02 mins)
INFO:birdwatch.constants:Applying scoring rule: ElevatedCRHInertia (v1.0) elapsed time: 1.56 secs (0.03 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterIncorrect (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by incorrect filtering: 561
INFO:birdwatch.constants:Calling score_notes: FilterIncorrect (v1.0) elapsed time: 2.87 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterIncorrect (v1.0) elapsed time: 3.48 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLowDiligence (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by low diligence filtering: 12594
INFO:birdwatch.constants:Calling score_notes: FilterLowDiligence (v1.0) elapsed time: 2.84 secs (0.05 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLowDiligence (v1.0) elapsed time: 3.49 secs (0.06 mins)
INFO:birdwatch.scoring_rules:Applying scoring rule: FilterLargeFactor (v1.0)
INFO:birdwatch.scoring_rules:Total notes impacted by large factor filtering: 17
INFO:birdwatch.constants:Calling score_notes: FilterLargeFactor (v1.0) elapsed time: 0.83 secs (0.01 mins)
INFO:birdwatch.constants:Applying scoring rule: FilterLargeFactor (v1.0) elapsed time: 1.50 secs (0.02 mins)
INFO:birdwatch.matrix_factorization:Num epochs: 70
INFO:birdwatch.matrix_factorization:epoch 70 0.1338496208190918
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.1044570803642273
INFO:birdwatch.constants:Pseudo: fit all notes with raters constant elapsed time: 202.19 secs (3.37 mins)
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings without assigned group: 0
INFO:birdwatch.scorer: Ratings after group filter: 6272990
INFO:birdwatch.scorer:MFGroupScorer_3 Filter input elapsed time: 45.33 secs (0.76 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.scorer: Ratings after group filter: 1508019
INFO:birdwatch.scorer:MFGroupScorer_2 Filter input elapsed time: 43.50 secs (0.73 mins)
INFO:birdwatch.mf_base_scorer:seeding with 0
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 934408, Num Unique Notes Rated: 71120, Num Unique Raters: 16159
INFO:birdwatch.scorer:MFGroupScorer_2 Prepare ratings elapsed time: 0.50 secs (0.01 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
INFO:birdwatch.pseudo_raters:------------------
INFO:birdwatch.pseudo_raters:Re-scoring all notes with extra rating added: {'raterParticipantId': '-3', 'raterIndex': 382562, 'internalRaterIntercept': -0.44769228, 'internalRaterFactor1': 0.98411465, 'helpfulNum': 1.0}
INFO:birdwatch.helpfulness_scores:Unique Raters: 7425
INFO:birdwatch.helpfulness_scores:People (Authors or Raters) With Helpfulness Scores: 42685
INFO:birdwatch.helpfulness_scores:Raters Included Based on Helpfulness Scores: 8606
INFO:birdwatch.helpfulness_scores:Included Raters who have rated at least 1 note in the final dataset: 7425
INFO:birdwatch.helpfulness_scores:Number of Ratings Used For 1st Training: 668701
INFO:birdwatch.helpfulness_scores:Number of Ratings for Final Training: 668701
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 382561, Notes: 1226896
INFO:birdwatch.matrix_factorization:initializing notes
INFO:birdwatch.process_data:After applying min 0 ratings per rater and min 5 raters per note:
Num Ratings: 5618874, Num Unique Notes Rated: 172529, Num Unique Raters: 68132
INFO:birdwatch.scorer:MFGroupScorer_3 Prepare ratings elapsed time: 2.84 secs (0.05 mins)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:------------------
INFO:birdwatch.matrix_factorization:Users: 7425, Notes: 71036
INFO:birdwatch.matrix_factorization:initializing notes
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:187: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.internalNoteInterceptKey].fillna(0.0, inplace=True)
/home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/matrix_factorization.py:193: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
noteInit[c.note_factor_key(i)].fillna(0.0, inplace=True)
INFO:birdwatch.matrix_factorization:initializing users
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.matrix_factorization:Ratings per note in dataset: 9.413550875612366
INFO:birdwatch.matrix_factorization:Ratings per user in dataset: 90.06074074074074
INFO:birdwatch.matrix_factorization:Correcting loss function to simulate rating per note loss ratio = 9.56399101071799
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.matrix_factorization:epoch 0 0.15567269921302795
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.11590553820133209
INFO:birdwatch.matrix_factorization:initialized global intercept
INFO:birdwatch.matrix_factorization:learning rate set to :0.2
INFO:birdwatch.matrix_factorization:cpu
INFO:birdwatch.model:Freezing parameter: global_intercept
INFO:birdwatch.model:Freezing parameter: user_factors.weight
INFO:birdwatch.model:Freezing parameter: user_intercepts.weight
INIT ERROR(S) AT: /home/ubuntu/communitynotes/sourcecode/scoring/matrix_factorization/pseudo_raters.py, in _check_note_parameters_same, at line 90: assert (noteParamsFromNewModel == self.noteParams).all().all()
PandasTypeError: Type expectation mismatch on noteId: found=bool expected=int64
INFO:birdwatch.matrix_factorization:epoch 20 0.10539298504590988
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07302097231149673
/home/ubuntu/communitynotes/sourcecode/scoring/helpfulness_scores.py:221: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
helpfulnessScores[c.aboveHelpfulnessThresholdKey].fillna(False), [c.raterParticipantIdKey]
INFO:birdwatch.matrix_factorization:epoch 40 0.10218331217765808
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.0704675167798996
INFO:birdwatch.matrix_factorization:epoch 60 0.10186641663312912
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07033660262823105
INFO:birdwatch.matrix_factorization:Num epochs: 62
INFO:birdwatch.matrix_factorization:epoch 62 0.10186642408370972
INFO:birdwatch.matrix_factorization:TRAIN FIT LOSS: 0.07036734372377396
INFO:birdwatch.matrix_factorization:Global Intercept: 0.17347291111946106
INFO:birdwatch.scorer:MFGroupScorer_2 Final helpfulness-filtered MF elapsed time: 3.50 secs (0.06 mins)
INFO:birdwatch.mf_base_scorer:In MFGroupScorer_2 final scoring, about to call diligence with 668701 final round ratings.
/home/ubuntu/communitynotes/sourcecode/scoring/reputation_matrix_factorization/reputation_matrix_factorization.py:467: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
View raw

(Sorry about that, but we can’t show files that are this big right now.)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment