Created
September 4, 2017 02:37
-
-
Save tushuhei/e96aa25969d845cf63c000e13c872bc3 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# coding: utf-8 | |
# | |
# Simulation program for unplugged neural network model. | |
# Reference: | |
# https://www.1101.com/morikawa/2001-03-12.html | |
# https://www.1101.com/morikawa/2001-04-02.html | |
import itertools | |
import random | |
import numpy as np | |
random.seed(1) | |
np.random.seed(1) | |
prices = np.array([310, 220, 70]) | |
max_choice = 3 | |
max_price = 600 | |
data = [np.array(i) for i in itertools.product(range(max_choice), repeat=len(prices))][::-1] | |
random.shuffle(data) | |
train_data = data[:5] | |
test_data = data[5:] | |
iters = 3 | |
nodes = np.array([5, 5, 5]) | |
thres = 6 | |
learn_rate = iters | |
for choice in test_data: | |
print 'CHOICE: %s,\tSUM_PRICE: %.2f,\tSUM_WEIGHT:%d\tTHRES:%d\tNodes:%s' % ( | |
choice, np.dot(prices, choice), np.dot(nodes, choice), thres, nodes) | |
if np.dot(nodes, choice) > thres: | |
print 'FIRE', | |
if np.dot(prices, choice) > max_price: | |
print 'ok' | |
else: | |
print 'ng. too sensitive.' | |
else: | |
print 'STAY', | |
if np.dot(prices, choice) > max_price: | |
print 'ng. too insensitive.' | |
else: | |
print 'ok' | |
print '>>> TRAINING START <<<' | |
for iteration in range(iters): | |
for choice in train_data: | |
print 'CHOICE: %s,\tSUM_PRICE: %.2f,\tSUM_WEIGHT:%d\tTHRES:%d\tNodes:%s' % ( | |
choice, np.dot(prices, choice), np.dot(nodes, choice), thres, nodes) | |
if np.dot(nodes, choice) > thres: | |
print 'FIRE', | |
if np.dot(prices, choice) > max_price: | |
print 'ok' | |
else: | |
print 'ng. too sensitive.' | |
thres += learn_rate | |
nodes[choice > 0] -= learn_rate | |
else: | |
print 'STAY', | |
if np.dot(prices, choice) > max_price: | |
print 'ng. too insensitive.' | |
thres -= learn_rate | |
nodes[choice > 0] += learn_rate | |
else: | |
print 'ok' | |
nodes = np.clip(nodes, 0, 10) | |
learn_rate -= 1 | |
print '>>> TRAINING DONE <<<' | |
for choice in test_data: | |
print 'CHOICE: %s,\tSUM_PRICE: %.2f,\tSUM_WEIGHT:%d\tTHRES:%d\tNodes:%s' % ( | |
choice, np.dot(prices, choice), np.dot(nodes, choice), thres, nodes) | |
if np.dot(nodes, choice) > thres: | |
print 'FIRE', | |
if np.dot(prices, choice) > max_price: | |
print 'ok' | |
else: | |
print 'ng. too sensitive.' | |
else: | |
print 'STAY', | |
if np.dot(prices, choice) > max_price: | |
print 'ng. too insensitive.' | |
else: | |
print 'ok' |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment