Created
July 28, 2010 13:16
楕円曲線上の法の有限体で足し算とかけ算
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module ECC | |
class ECC_Point | |
def initialize(x, y) | |
@x = reduce(x, MOD) | |
@y = reduce(y, MOD) | |
end | |
def zero? | |
(@x == 0 && @y == 0) | |
end | |
def validPoint? | |
EC_func::l(@y) % MOD == EC_func::r(@x) % MOD | |
end | |
def multipl(k) | |
bin = reduce(k, ORD).to_s(2) | |
rev = bin.reverse | |
res = (rev[0].chr == '1') ? self : ECC::ECC_Point.new(0, 0) | |
w = [self] | |
(1..(rev.size-1)).each do |i| | |
w[i] = w[i-1].add(w[i-1]) | |
res = res.add(w[i]) if rev[i].chr == '1' | |
end | |
res | |
end | |
def to_s | |
"#{@x}, #{@y}" | |
end | |
def rev(n) | |
raise "bud input" if n % MOD == 0 | |
r = [MOD, reduce(n, MOD)] | |
q = [0, 0] | |
x = [1, 0] | |
y = [0, 1] | |
(2..99).each do |i| | |
r[i] = r[i-2] % r[i-1] | |
return reduce( y[i-1] , MOD) if r[i] == 0 | |
q[i] = ( r[i-2] - r[i] ) / r[i-1] | |
x[i] = x[i-2] - q[i] * x[i-1] | |
y[i] = y[i-2] - q[i] * y[i-1] | |
end | |
raise 'loop too short' | |
end | |
def add(other) | |
return self if other.zero? | |
return other if zero? | |
raise "something wrong" if @x == other.x && @y != other.y | |
if @x == other.x && @y == other.y | |
return ECC::ECC_Point.new(0, 0) if (@y * 2) % MOD == 0 | |
l = EC_func.dif_r(@x) * rev(EC_func.dif_l(@y)) | |
else | |
l = (other.y - @y) * rev(other.x - @x) | |
end | |
tx = (l % MOD)**2 - @x - other.x | |
ECC::ECC_Point.new(reduce(tx, MOD), reduce(l * (@x-tx) - @y, MOD)) | |
end | |
def reduce(n, mod) | |
return n % mod if n >= 0 | |
return ((n.abs/mod).ceil * mod + n) % mod | |
end | |
attr_reader:x | |
attr_reader:y | |
end | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment