Created
July 23, 2021 15:45
-
-
Save usr-ein/5dd821b06c2e2accabc6575c1388d031 to your computer and use it in GitHub Desktop.
REINFORCE algorithm in PyTorch
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
import gym | |
import numpy as np | |
from itertools import count | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.optim as optim | |
from torch.distributions import Categorical | |
parser = argparse.ArgumentParser(description='PyTorch REINFORCE example') | |
parser.add_argument('--gamma', type=float, default=0.99, metavar='G', | |
help='discount factor (default: 0.99)') | |
parser.add_argument('--seed', type=int, default=543, metavar='N', | |
help='random seed (default: 543)') | |
parser.add_argument('--render', action='store_true', | |
help='render the environment') | |
parser.add_argument('--log-interval', type=int, default=10, metavar='N', | |
help='interval between training status logs (default: 10)') | |
args = parser.parse_args() | |
env = gym.make('CartPole-v1') | |
env.seed(args.seed) | |
torch.manual_seed(args.seed) | |
class Policy(nn.Module): | |
def __init__(self): | |
super(Policy, self).__init__() | |
self.affine1 = nn.Linear(4, 128) | |
self.dropout = nn.Dropout(p=0.6) | |
self.affine2 = nn.Linear(128, 2) | |
self.saved_log_probs = [] | |
self.rewards = [] | |
def forward(self, x): | |
x = self.affine1(x) | |
x = self.dropout(x) | |
x = F.relu(x) | |
action_scores = self.affine2(x) | |
return F.softmax(action_scores, dim=1) | |
policy = Policy() | |
optimizer = optim.Adam(policy.parameters(), lr=1e-2) | |
eps = np.finfo(np.float32).eps.item() | |
def select_action(state): | |
state = torch.from_numpy(state).float().unsqueeze(0) | |
probs = policy(state) | |
m = Categorical(probs) | |
action = m.sample() | |
policy.saved_log_probs.append(m.log_prob(action)) | |
return action.item() | |
def finish_episode(): | |
R = 0 | |
policy_loss = [] | |
returns = [] | |
for r in policy.rewards[::-1]: | |
R = r + args.gamma * R | |
returns.insert(0, R) | |
returns = torch.tensor(returns) | |
returns = (returns - returns.mean()) / (returns.std() + eps) | |
for log_prob, R in zip(policy.saved_log_probs, returns): | |
policy_loss.append(-log_prob * R) | |
optimizer.zero_grad() | |
policy_loss = torch.cat(policy_loss).sum() | |
policy_loss.backward() | |
optimizer.step() | |
del policy.rewards[:] | |
del policy.saved_log_probs[:] | |
def main(): | |
running_reward = 10 | |
for i_episode in count(1): | |
state, ep_reward = env.reset(), 0 | |
# state: Tsr[4] | |
for t in range(1, 10000): # Don't infinite loop while learning | |
action = select_action(state) | |
state, reward, done, _ = env.step(action) | |
if args.render: | |
env.render() | |
policy.rewards.append(reward) | |
ep_reward += reward | |
if done: | |
break | |
running_reward = 0.05 * ep_reward + (1 - 0.05) * running_reward | |
finish_episode() | |
if i_episode % args.log_interval == 0: | |
print('Episode {}\tLast reward: {:.2f}\tAverage reward: {:.2f}'.format( | |
i_episode, ep_reward, running_reward)) | |
if running_reward > env.spec.reward_threshold: | |
print("Solved! Running reward is now {} and " | |
"the last episode runs to {} time steps!".format(running_reward, t)) | |
break | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment