Created
February 11, 2025 13:32
-
-
Save vassvik/15b6dd8ef414e5ec9462f4e4d705e977 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sympy | |
h = sympy.Symbol("h") | |
f = sympy.Symbol("f") | |
e = sympy.Symbol("e") | |
c = sympy.Symbol("c") | |
def taylor_expansion(a, b, c): | |
n = 4 | |
derivatives = [0] * n | |
steps = [0] * n | |
result = sympy.IndexedBase("p") | |
for order in range(1, n+1): | |
for i in range(0, 3**order): | |
for j in range(0, order): | |
derivatives[j] = int((i / (3**(order-1-j))) % 3 + 1) | |
step = [a, b, c][derivatives[j] - 1] | |
steps[j] = step | |
total_step = 1 | |
symbol_name = "" | |
for j in range(0, order): | |
total_step *= (steps[j] * h) | |
component = derivatives[j] - 1 | |
symbol_name += ["x", "y", "z"][component] | |
symbol_name = ''.join(sorted(symbol_name)) | |
result += (1 / sympy.factorial(order)) * total_step * sympy.Symbol(symbol_name) | |
return result; | |
def discretized_laplacian(face, edge, corner): | |
# Note: any linear combination of the face, edge and corner coefficients will | |
# produce a valid discretized Laplacian, except for when normalization == 0 | |
center = face * 6 + edge * 12 + corner * 8 | |
normalization = face + 4*edge + 4*corner | |
expr = ( | |
- center * taylor_expansion(0, 0, 0) | |
+ face * taylor_expansion( 0, -1, 0) | |
+ face * taylor_expansion( 0, 0, 1) | |
+ face * taylor_expansion( 0, 0, -1) | |
+ face * taylor_expansion( 1, 0, 0) | |
+ face * taylor_expansion(-1, 0, 0) | |
+ face * taylor_expansion( 0, 1, 0) | |
+ edge * taylor_expansion( 1, 1, 0) | |
+ edge * taylor_expansion( 1, -1, 0) | |
+ edge * taylor_expansion( 1, 0, 1) | |
+ edge * taylor_expansion( 1, 0, -1) | |
+ edge * taylor_expansion(-1, 1, 0) | |
+ edge * taylor_expansion(-1, -1, 0) | |
+ edge * taylor_expansion(-1, 0, 1) | |
+ edge * taylor_expansion(-1, 0, -1) | |
+ edge * taylor_expansion( 0, 1, 1) | |
+ edge * taylor_expansion( 0, 1, -1) | |
+ edge * taylor_expansion( 0, -1, 1) | |
+ edge * taylor_expansion( 0, -1, -1) | |
+ corner * taylor_expansion( 1, 1, 1) | |
+ corner * taylor_expansion( 1, 1, -1) | |
+ corner * taylor_expansion( 1, -1, 1) | |
+ corner * taylor_expansion( 1, -1, -1) | |
+ corner * taylor_expansion(-1, 1, 1) | |
+ corner * taylor_expansion(-1, 1, -1) | |
+ corner * taylor_expansion(-1, -1, 1) | |
+ corner * taylor_expansion(-1, -1, -1) | |
) / (normalization*h*h) | |
print("27-point {} {} {} {} {}: ".format(center, face, edge, corner, normalization), expr.simplify()) | |
return expr | |
L7 = discretized_laplacian(1, 0, 0) | |
L13 = discretized_laplacian(0, 1, 0) | |
L9 = discretized_laplacian(0, 0, 1) | |
L = f*L7 + e*L13 + c*L9 | |
print(L7) | |
print(L13) | |
print(L9) | |
print(L) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment